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Preface

This application oriented thesis has taken many long nights and

hundreds of designs to piece together, but I believe that each minute was well

worth it and enjoyed. Hopefully this effort will be useful to designers seeking

to develop optimal controllers, and if this work brings the eventual use of one

of these optimal methods on an actual aircraft one step closer to reality, I will

'know that my goal has been accomplished. My honest belief is that general

mixed H2/H.. optimization is the methodology of the near future, and I have

confidence that the reader will agree.

Now I wish to thank the many people that have helped me on this

thesis, and at AFIT in general. I begin by thanking the most important

friends that I see everyday, this special recognition goes to my AFIT

classmates of GAE-92D. The support I have received from Craig, Mike, Joe,

Dempsey, and Dan has been incredible. Naturally the staff at AFIT has made

a tremendous impression on me, and I trust that many more Air Force officers

will realize the quality of education here and enroll at AFIT. Most

importantly, the faculty members that I wish to thank are my thesis

committee, consisting of Dr Liebst and Capt Walker, and my advisor,

Dr Ridgely. Dr Ridgely has given much needed guidance over my stay at

AFIT, not only on my thesis, but on other technical subjects and on personal

issues. I owe him the most of anyone for opening my eyes to the incredible
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world of modern flight control design. Also, the timely support of

Maj Mracek will be well remembered. Not to forget the closeness to the

Control Analysis Group of the Flight Dynamics Laboratory, I acknowledge the

efforts and kindness of Mr Bowlus and Dr Banda. For technical support on

writing this thesis, Capt Wells has aided me with graphical integration and

word processing problems, not to mention having such a fine thesis to use as a

guide. I also thank God for giving me this opportunity, and for blessing me

with good health.

Lastly, and most importantly, I want to thank the one that has made

AFIT and my life so enjoyable, and the one I love with all my heart,

Jennifer Hill. I do not believe there is another woman that could have

endured the strain on a relationship such as she has.

Dedicated to my fiancee, Jennifer Hill. Thanks for everything!

James C. Baird
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sup supremum
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AFIT/GAE/ENY/92D-08

Abstract

Weight shapes and locations are investigated for H2, H., and the general

mixed H2/H. optimization methodologies. The design model is normal

acceleration command following for the F-16 (SISO) at Mach 0.6 and Sea

Level, which yields a nonminimum phase and unstable plant. H2 design types

include LQG, LQG/Sensitivity, and LQG/Tracking. Robustness and tracking

are the objectives of the central H. process. Both H. optimal and suboptimal

controllers are examined, with the suboptimal controller shown as the practical

choice for this plant. The mixed H2/H. setup allows the tradeoff between H2

tracking and noise rejection, and H. robustness. Results of weight choices on

all designs are discussed, with the mixed H2/H. design being favored.
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STRATEGIES FOR OPTIMAL CONTROL
DESIGN OF NORMAL ACCELERATION
COMMAND FOLLOWING ON THE F-16

I. Introduction

1.1 Background

Frequency weighted optimal control methods have experienced significant

advancements over the last decade, but this progress has centered mainly on

theoretical aspects. While many optimal design solutions have been

simplified, and new ones discovered, the application of optimal compensator

designs has lagged far behind the theoretical developments. Furthermore, a

large number of applications are either unrealistic, not related to air vehicles,

or the basis for selecting the design weights is not included. However,

control systems are used in almost every machine in existence, even though all

of these are not optimal designs. A performance index is the reason that a

design can be considered optimal, with minimization of this measure typically

being the task. Three optimal design methodologies examined in this work are

the H2, H., and general mixed H2/H. techniques. Whereas the H 2 and H.

developments are fairly mature, Ridgely's general mixed H 2/H. method is not
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as refined, especially the solution process [Rid91]. This mixed design

methodology, that competes H2 and H.. objectives, also has a limited

application history because of its recent development. With a shortage of

applications that include background on weight selection (other than the

popular mixed-sensitivity case), a need for thorough design formulations is

evident.

A compensator is designed with the goal oi keeping certain parameters

within predetermined levels. Hence, an effective design depends largely on

the knowledge of system requirements, and the design parameters that can be

manipulated to give these. Typically the linear time-invariant plant, that may

include weights, imposes restrictions on the closed-loop system that must be

"traded off" by the designer. A simple example would be with the feedback

loop itself. While there are obvious advantages that pertain to managing

disturbances and small modelling errors, problems can develop in a feedback

system due to noise corruption of the feedback signal, or when a disturbance

is actually amplified by using the feedback loop. Therefore, a feedback loop

can constrain attainable closed-loop properties of the system. Hence, the

designer manipulates optimal design parameters, like the quadratic weighting

matrices in LQG, to produce a satisfactory compensator. To manipulate this

optimal process, the designer must understand the methodology being used so

that an appropriate technique can be selected and properly applied to the

design plant [FrL88].
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Consider the case where the designer needs minimal energy passage to a

system output from a white noise input. This is represented by the transfer

function (matrix) 2-norm when the input is a zero-mean unit intensity white

noise with a Gaussian distribution. The 2-norm calculation represents an

integral over the linear frequency range as in

IIG(ji))112  [v tr[G*(jo)G(jiw) ] dco (1.1)

Even though performance aspects of the optimal H2 methodology can be

significant, as in LQG, the benefits are often overshadowed by the drawback

of stability margins that are not guaranteed.

Now consider the case where a bounded, but unknown, input signal needs

to be minimized by the control design. This yields the popular H.

methodology, which can be combined with the c-norm's submultiplicative

property and the Small Gain Theorem [Zam66] to give a guaranteed robustness

level. One motivation for using a robustness tool comes from the model

development of the system. Since many approximations and linearizations are

required, and some system dynamics are typically ignored, a technique that

employs good robustness features is often needed. Unlike the H2 method, the

optimal H. process can eliminate peaks in a transfer function (matrix) by

constraining the maximum singular value over all frequency. This is

demonstrated in the a-norm formula, Equation (1.2).
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JIG0 o) SUP (a o[G (jo)] (1.2)

This constraint imposed by the 0c-norm calculation gives an "all-pass" feature

to the design. The problem with the H,. technique is that the noise issue is

generally ignored, and turns out to be a serious drawback in optimal H.

designs because the compensator does not roll off, like the H 2 compensator

does. Furthermore, the optimal H. design possesses an iterative solution

technique.

It is clear that each of these optimal design methods has significant

benefits that a designer wants, but the drawbacks can be equally important.

Hence, the designer needs a process by which the beneficial performance of

the H2 compensator can be visibly traded with the guaranteed robustness of the

H. design. It is realistic that one has to be given up to gain more of the

other, either robustness or performance, since the two are competing

objectives. Ridgely's general mixed H2/H. methodology accomplishes this by

maximizing H2 performance while holding H. robustness at a predetermined

level. Although the mixing of H2 and H. methodologies is not new, the

general mixed technique developed by Ridgely is the first "nonconservative"

solution (and is the one employed in this work). With an overview of these

three optimal design techniques given, now consider applications of these

methods.
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The plant used in the design process is generally not the same as the basic

model plant. The linear time-invariant design plant, denoted as P, contains

the weights that have been added by the designer. The original plant is only a

small part of this design plant; therefore, the compensator that is returned by

the optimization procedure is optimized for this design plant. Added weights

can be transfer functions that manipulate less important frequency

requirements of a design to give better results in more important frequency

ranges. However, there are constraints imposed on this tradeoff by the design

plant. An example of this would be shaping the sensitivity transfer function

for good complex margins, while knowing the sensitivity transfer function

must obey an integral constraint.

In summary, this history presents a need for realistic applications of

optimal design methods. Three optimal design techniques are introduced, and

the design plant is shown to be the key to applying these procedures. Most

importantly, the weights included in the design plant are the factors that

determine the success of the resulting controller design, and these shapes and

locations can be defined once selection of the optimal design method is made.

1.2 Research Objectives

The main objective of this thesis is the investigation of weight locations

and shapes for optimal control design techniques. Secondary objectives

include examining two degree-of-freedom (2 DOF) controllers for aircraft
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applications, justifying the use of an H.. suboptimal compensator over an

optimal one, and showing the first realistic application of Ridgely's general

mixed H2/H. technique.

Due to the number of designs shown in this work, each is not examined in

full detail. The three design methodologies utilized in this work are the H2,

H., and general mixed H 2/H. types. Also, the 2 DOF controller used in

many designs has common poles for the feedforward and feedback

compensators, unlike some applications where the compensators are

independent designs. Although the feedforward compensator can be altered

after the design, perhaps to correct a nonzero steady state error from a step

input, this is not done here. The basis for choosing weights and analyzing

results is to show general trends. In analyzing compensators for time

responses, only step commands and initial angle-of-attack (a) perturbations

will be examined. The short period approximation of the F-16 normal

acceleration command following at Sea Level and Mach 0.6 is the aircraft

model. Furthermore, result comparisons to other techniques, such as

LQG/LTR, is not the intent of this work.

1.4 Thesis Outline

This thesis consists of seven chapters. Chapter I gives overall background
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and motivation for investigating weight functions in three optimal designs.

These three methods are introduced, and the design plant shown to be the

focus of this work.

Chapter II provides the necessary understanding of the optimal design

methods. Also included is a brief review of publications that center on the

mixed-sensitivity problem, one example of a 2 DOF design, and a summary of

possible constraints for an unstable nonminimum phase design plant.

Chapter III develops the longitudinal normal acceleration command

following model used for this F-16 example. In addition, the various methods

of analyzing a compensator design are presented. These consist of examining

transfer functions such as sensitivity, and time responses (i.e. for a step

input).

The first design studies are the H 2 ones of Chapter IV. A basic LQG-type

performance index is initially examined, followed by an LQG/Sensitivity and

an LQG/Tracking scheme. The purpose of the LQG design is for regulation,

whereas the two designs that follow attempt to improve on performance and

robustness.

Chapter V begins with an optimal H. tracking design that includes

weights to help system robustness. Since problems with noise attenuation will

be significant because of the optimal H. compensator's "D" term, a section on

suboptimal H.. controllers is included. Hence, explanations on optimal versus

suboptimal tradeoffs are also provided.
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The design method used in Chapter VI is Ridgely's general mixed H2/H.

optimization. A visible tradeoff in H 2 and H. objectives is a key to this

methodology. The mixed solution algorithm is also examined, and plots of

two mixed cases are compared to the separate optimal H 2 and H. designs.

Furthermore, comments on creating a start guess for the mixed algorithm are

given.

The final chapter, Chapter VII, gives the overall conclusions for this

design weight study. Also included are recommendations for further work,

and an overview of this thesis.
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II Methodology Overview
and Related Work

2.1 General Discussion

This chapter is intended to lay the foundation for the specific compensator

designs that will follow. First the H2, H.., and general mixed H2/H.. design

procedures are explained. An understanding of these design tools is necessary

before examining applications. Since complete theoretical backgrounds are not

given, the reader may wish to review the references that accompany the

procedure outlines. Following this methodology overview is a summary of

contributions related to design weight choices applicable to aircraft. Although

there are numerous examples of missile and space systems in print, only select

aircraft designs are investigated due to brevity. A look at a 2 DOF example is

also included since most designs will be of this type. The combination of the

methodology background and example summary will aid the designer in

properly applying these techniques. Only insight into weight locations and

shapes is the remaining factor for a successful design application.

2.2 16 Optimization

H2 optimization, which parallels the popular LQG problem in the optimal

output feedback case, is based on minimizing the 2-norm of a transfer function
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matrix from white noise inputs to controlled outputs (T,). Specifically, the

white noise input is assumed to be zero-mean, unit intensity, and possess a

Gaussian distribution. Figure 2-1 shows the basic H2 design diagram with the

controlled output as z, and the white noise input as w. The remaining vectors

are the controlled input to the plant u, and the measured plant output y.

u y

Figure 2-1. H2 Design Diagram

Again, P includes design weights. The procedure is to find the admissible

K(s) that minimizes 11 Tz. j 2, which is equivalent to finding the admissible K(s)

that minimizes the energy of z due to w (by Parseval's Theorem). T• is the

closed-loop transfer function from w to z, which can be written as a linear

fractional transformation (LFT) of P and K from Figure 2-1 as

z = [T,] w - [P= + PK(I - PyK) 1'P•] w
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The smallest possible 2-norm value of T., will be represented by of, as in

inf ZIl2 = inf IT•.112 M o
K adm K adm

where

I T. 112 = [ J tr[T;(jw) )T.(jco)] dco

Before the H 2 compensator can be found, the design plant P (in

Figure 2-1) must be represented in state space form. The resulting nine

matrices that make up P are

it = Ax + Bw + Bu (2.1a)

z = Cx + D•,w + Dinu (2.1b)

y = Cyx + DYw + Dyu (2. Ic)

Important assumptions on these matrices consist of:

(i) D= 0

(ii) D•, 0

(iii) (A, B.) stabilizable & (Cq, A) detectable

(iv) IJU.DV full rank ; DrWI full rank

Wv •A-jwI B has full column rank for all w

3I B
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(vi) [A.Jc x B] has full row rank for all (

All six of these conditions must be known to the designer for use in problem

setup. The assumption (i) is actually a requirement for the 2-norm of the

closed-loop transfer function to be finite, since noise w has infinite energy.

The next condition, on Dy, is not necessary but is made to simplify the

problem. For stabilizing compensators to exist, (iii) must be satisfied. Both

conditions in (iv) are needed to avoid singular control problems. Constraints

(v) and (vi) are required for existence of stabilizing solutions to the algebraic

Riccati equations (AREs) that appear in the problem solution.

A method of scaling u and y, which is internal to the solution algorithm,

can be used to strengthen (iv) to D:T.Dz,= I and DyADy..= I. An explanation

of this scaling process, along with accompanying figures, is in [Rid91]. The

revised condition will always be satisfied when the original (iv) is met, since a

nonzero scaling will not alter the rank structure. Scalings on u and y are not

shown in the following H2 optimization solution, i.e. they are assumed to be

identity.

The H 2 output feedback solution follows from [DGKF89], where the

family of all admissible compensators that satisfies 11 T 112 :9 a (with

a ?: cr) is given by the LFT of J(s) and the freedom parameter Q(s), as in

Figure 2-2. For Q(s) equal to zero, the Jy(s) transfer function is equal to
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symmetric, positive semidefinite solutions to the AREs below. X2 and Y2 will

be real and unique.

(A-BjJc C)TX2 + X2(A-BiJfC0-XBB T X2

+[(I-D.T.,)cT [(I-D.If.)c. = 0

T T T(A-B D Cy)y 2+ y2(A-BDCD QY)C- CY,, CY 2

+[B,,(I-YDy,,D,)I[B(I-,D,)IT = 0

H2 designs investigated in this work are all optimal output feedback

compensators, with x = ot. and Q(s) = 0; therefore, K(s) = K2.,,. This

compensator is unique, full order, and exhibits the separation structure like

LQG compensators. Also notice that the optimal compensator below is strictly

proper and not dependent on Kcj or Kft.

2.3H. Optimization

The H. optimization methodology, used mainly for robust control design,

is based on minimizing the energy of a controlled output to a deterministic

input signal that has bounded, but unknown, energy. With the input d
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normalized such that 1 d 112 < 1, the objective is

inf sup 11e1 2 m inf IT•dl. -M

K adm 11d 112 < 1 K adm

The bounded input being referred to as d, and the controlled output as e, are

to decrease the possible conflict with parameters from the H2 section. These

variables give the closed-loop transfer function d to e its Ted notation. The

co-norm of Td is defined as

11 Td(jw 0 O W SUP [Tj00)]

The H.. block diagram, Figure 2-3, shows the bounded input d and controlled

output e.

u y

K

Figure 2-3. H. Design Diagram

The state space solution for output feedback is also based on [DGKF89], with

the actual program used in this work being the [SLC89] procedure. With the
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H. notation comes a design plant P represented by Equation (2.3). P (as in

H2) is linear, time-invariant, and includes design weights.

S= Ax + Bdd + BUu (2.3a)

e = C~x + Ddd + Du (2.3b)

y = CYx + DYdd Dy,,u (2.3c)

Assumptions on these nine H. matrices are:

(i) Vd = 0 (ii) Dy,- =O

(iii) (A, B.) stabilizable & (Cy, A) detectable
(iv) I•,fD full rank ; Ty4Id full rank

(v) [A-jcoI B. has full column rank for all co
I cc D

(vi) [A-jIo Bd] has full row rank for all o

I CY VydI

Again, these conditions must be known to the designer. The assumption (i),

made to ease problem formulation, is not a requirement as in the H2 method

because even if the closed-loop transfer function T, has a "D" term, the

c-norm is not necessarily infinite. The condition on Dr. is not necessary, but

simplifies the problem. For stabilizing solutions to exist, (iii) must be

satisfied. Both conditions in (iv) are necessary to prevent possible singular
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control problems. Conditions (v) and (vi) are required because of the solution

procedure used. A complete examination of the approach assumptions for this

[DGKF89] state space solution is given in [Gah92].

The same type of scaling on u and y, which is also internal to the H..

solution algorithm, can be used to strengthen (iv) to IDT•D,-= I and

DydDyd-- I. A complete description of this scaling process is in [Rid9l]. The

revised condition (iv) will always be satisfied when the original (iv) is met.

As before, scalings will not be shown in the following H. solution, i.e. they

are assumed to be identity.

Because of the complication involved in parameterizing all H.. optimal

controllers, the parameterization of all suboptimal controllers is explained.

The procedure for finding the optimal value of y, called - 0, is an iteration

technique that depends on three particular conditions. Even though this

parameterization is for suboptimal controllers, a value of Y very close to 'Y0

can give a suboptimal controller almost the same as the optimal (7Y.) one.

Furthermore, it is known that the family of suboptimal controllers must satisfy

I Td I,. < y (with y > %0) and should yield an empty set for -y °-y Now

the parameterization can be given by J(s) in Equation (2.4).

Aj Kf Kfj

AS) 1 I] (2.4)

2Kl 1 0
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This J(s) will be completely known for a particular value of y'. The

components of J(s) are

A, = A-KtCy-B.K,• +2Y..C, (Ce-D K)

T +BT
Kr = Y.CY +BdD~d

Kn -= "2YycJ D.+Bo

KC= (BT X D+ITC.)(IYY .X.)"

l -(-(V" 2DydBd X . + Cy) (I-' 2Y.Xj'f

The separation principle in H2 optimization now falls apart because of the

boldface term in Aj, which represents H. coupling. As in the H2 explanation,

the K,, and Kn equations are not needed for the Q(s) = 0 controller (the

central H. controller). There can be a central (Q(s) = 0) H. optimal or

suboptimal controller; likewise, there can be a noncentral (Q(s) 0 0) H.

optimal or suboptimal controller. The X,. and Y., matrices in the J(s)

components are the solutions to the two AREs below, again without scalings.

TT TT
(A-BJ.I.C.)TX + X.(A-BuIdeCe) + XW.(Y 2BdBT -B,BT )X.

+C . r(-D TI-DI.1J,)C. = 0

(A-Bd•,C,) Y. + Y.(A-Bd,,TC,)T + Y.( Y<2C. C 6-C C)Y.

+Bd(I-lITdDd)(I-DIdDYd)TBT 0
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The choice of Q(s) must be stable and proper, satisfying Q E RH., and the

y constraint must also be met by 11 Q . < y. The three conditions that were

referred to in the start of the suboptimal parameterization are:

(i) H. E dom(Ric) with X. = Ric(H1 ) z 0

(ii) Hy E dom(Ric) with Y0. = Ric(Hy) ; 0

(iii) (Y•.X•.) < "Y2

These are also discussed in Chapter V, and depend particularly on two

Hamiltonian matrices H. and Hy. HX is the Hamiltonian for the first ARE that

yields X., and similarly Hy is the Hamiltonian for the second ARE that

produces Y. (see [Rid9l,79-80]). The second conditions in both (i) and (ii)

are to ensure positive semidefinite solutions to the AREs. The third condition

written as a strict inequality depends on the spectral radius (p) of the matrix

Y.X., and is typically an equality at the optimal solution, i.e.

p(Y.X.) = y.2. The problem that arises is in the boldface part of the K, and

Kcj equations of J(s). The (I-,- 2Y.X.)-' term does not exist at

p(Y.X.) = -t.2, but the problem can be removed by a descriptor system

approach [GLDKS91]. This method produces a compensator with a "D" term

and an order one less than the design plant (this is the case in the optimal

designs of Chapter V). Remember the value of y. will be the infimum of 'y

that simultaneously satisfies all three conditions; therefore, an iterative

solution technique must be utilized. A detailed description of the ARE
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solutions for the H. problem, particularly the -y domain, is given in [Li92].

The H. optimal designs in this work are all central controllers, i.e.

Q(s) = 0, with a unique compensator solution. Order of this optimal

compensator will be one less than the order of the design plant, whereas the

suboptimal solutions will be the same order as the plant.

2.4 Mixed H2/8. Optimization

The nonconservative tool that trades between H2 and H. objectives is that

developed by Ridgely [Rid91]. Because of the complexity involved in a full

explanation of his theory and development, only a basic overview will be

given. The need for an approach that competes H2 and H.. objectives is

apparent from Chapter I. The objective of the mixed case is

inf 1I T. II 2, subject to the constraint I T, j, -< y
K adm

where T, and Td can be designed completely independent of each other.

Figure 2-4 shows the general setup for the mixed case, with the variables in

the figure defined the same as before.

Two concerns that immediately arise are in the connection of these

different procedures (H 2 and H.) and the use of a nonzero Q(s) in the mixed

problem. Regarding the later concern, this method provides a rationale for

choosing a nonzero Q(s) (lowering of I T•, 1 2), since in the previous H.
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w • z

d e

Figure 2-4. Mixed H2/H. Design Diagram

development a method for selecting a beneficial Q(s) is not given. It is

important to note that the problem of choosing a Q(s) for an H. design is

continuously being studied. Now attention turns to adjoining the

H2 and H. design procedures to give this mixed methodology.

To begin with, the state space of P is now larger than that of the separate

H2 and H. designs. This can be seen in Figure 2-4 since there is now an

additional input and output to the plant. The sixteen design plant matrices in

the mixed P are

;k = Ax + Bdd + Bw + Bu (2.5a)

e = Cx + D.d + D~w + Du (2.5b)

z = Cx + Ddd + D.,w + D.u (2.5c)

y = Cyx + Dygd + Dyw + Dy.u (2.5d)

The Dj, and D.,, matrices are not needed in the problem formulation. As in
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the previous H2 and H.. discussions, many conditions are assumed for the

individual matrices of Equation (2.5). For the mixed case these are basically

a combination of the previous assumptions on the separate H2 and H..

procedures, and are given by the following:

(i) D,• = 0 (ii) D. =0 (iii) Dy,- 0

(iv) (A, B.) stabilizable & (Cy, A) detectable

(v) ITJ,D., full rank ; Dydld full rank

(vi) IDTZD,. full rank ; DyDT. full rank

(vii) [A-jcoI B. ] has full column rank for all wo

I cc DO,

(viii) [A-jcII Bd ] has full row rank for all co

I CY Dyd,

(ix) [A-jwI B. has full column rank for all wo

I CZ Dj

(x) [A-jcuI B, ] has full row rank for all w

First, the condition on Dd being zero is for convenience in problem

development. Requirement (ii) is to ensure a finite 2-norm for TZ,. The third

condition is another assumed to make problem development easier, although it
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is a practical assumption. Condition (iv) is necessary for stabilizing solutions

to exist, and (v) and (vi) are for avoiding singular control problems. The

remaining four conditions are duplicates of the individual H2 and H.,

requirements that ensure admissible solutions in each case. It is again

emphasized that these conditions need to be examined in the design problem

formulation, and it will be seen in Chapter VI that one of these does create a

problem.

For a finite 2-norm of T,, it is known that the compensator has no "D"

term. With this, and u(s) = K(s)y(s), the closed-loop system can be

rewritten with a state vector that includes the compensator states as

"T At + Bdd + kw (2.6a)

e = ,i + D.,w (2.6b)

z - X + D.d (2.6c)

The individual closed-loop (tilde) matrices of Equation (2.6) are given by

[Rid9l,92-93], with the main point being that now the closed-loop transfer

functions for the separate H2 and H.. diagrams can be written as

T= C (sI-A)"l % and T, = C (sI-A)"' B.,. Again the objective is to find a

stabilizing K(s) that will be strictly proper and satisfies I Td j-5, - while

minimizing I T2 , 1 2. With the closed-loop tilde matrices just shown, the

2-norm of T., can be expressed as IT_ 12 = tr[Q2 d CJ. The Q2 that

appears in this new expression is the symmetric, positive semidefinite solution
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to the Lyapunov equation

AQ 2 + Q2A +TBB = 0 (2.7)

This enforces that A is stable, and K(s) is stabilizing, through Lyapunov

theory. With a stabilizing solution guaranteed from the Lyapunov equation,

the Bounded Real Lemma [Wil7l] proves that the symmetric, positive

semidefinite solution to the following ARE gives 11 T,, d • y.

AQ•.+ Q.A T + -_2Q.C- QT + dd f, T 0 (2.8)

Now the mixed case can be formulated as finding the K(s) (strictly proper)

that minimizes the index

J(A.,BC,CC) = tr[Q2q CQ (2.9)

subject to Equation (2.7) and such that

T +BB~ =,2C 0T

has a real, symmetric, positive semidefinite solution [Rid9l]. This problem

statement immediately lends itself to a Lagrange multiplier formulation

because of the performance objective and the two constraint equations. Let

the Lagrange multiplier mixed problem be to minimize Equation (2.10).
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tr[Q2a CQ + tr{[AQ2 + Q2AT + B,,Z ]X}

+ tr{[AQ. + Q.A T + _.2Q.a cQ. + BiZ]y) (2.10)

where X and Y are Lagrange multiplier matrices. The unknowns needed are

X, Y, Ac, Bc, C,, Q2, and Q.. The assumptions for this minimization are

Q2 0 and Q0 = T > 0. For this problem, the seven first order

necessary conditions for a minimum are given by [Rid9l,97-98]. The solution

to these is found to lie on the boundary of the oo-norm constraint when the H2

and H. objectives are competing [Rid9l, Theorem 4.2.3]. For theoretical

interest into Ridgely's full order contributions, the theorems presented in

[Rid9l,100-109] are critical and give the foundation of his approach. A

summary of additional information on the mixed solution is:

i) No mixed solution exists for -y < 3'°, and K2,t is equivalent to the

solution for -y ; 3y2 (where 3y2 is the value of I Tdf 0 using K2.,)

[Rid9l, Theorems 4.2.1 and 4.2.2].

ii) The mixed solution comes from seven first order necessary conditions,

which are highly coupled and nonlinear. This motivates the numerical method

that is used by Ridgely and in this work.

iii) For % < y' < 3y2, a neutrally stabilizing ARE solution is required.

Also a Lyapunov equation that has no constant term must be solved.

This last requirement (iii) leads to a suboptimal derivation to allow a
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numerical solution. The modified "suboptimal" performance index, for As

between zero and one, of Equation (2.9) is

JF,(AC,B.,Cc) = (1-As) tr[Qd C,2] + j tr[Q.C. Q

The benefit of this is that the original solution (minimize Equation (2.9)) can

be approached by driving / very close to zero, and the iteration procedure can

start with a p value near one. For A = 1, the mixed problem yields the

equivalent central H. suboptimal compensator. The Lyapunov equation that

had no constant term, which is one of the necessary conditions that must be

solved, now has a constant term so that a Lyapunov solver can be used.

Also, the ARE that required a neutrally stabilizing solution now requires a

stabilizing solution. The seven necessary conditions for this suboptimal mixed

procedure are in [Rid91,116-117]. The important theorem of the suboptimal

method approaching the optimal one, when ; goes to zero, is given by

[Rid9l, Theorem 5.1.2]. The suboptimal Lagrangian is now

•, = (1-g) tr[Q2q Q] + ; tr[Q.c
tr{[AQ2 + Q2AT + - - XT

"+ tr{[AQ..+ Q.A T + y-2Qaj .Q.+ % i]y)

With the problem set up in this suboptimal context, the numerical solution is

ready to be found for chosen values of gs. The algorithm selected to solve this

optimization problem, and a detailed explanation of the procedure for its use,
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is discussed in Chapter VI. Since the three design techniques have been

presented, an examination of current studies that yield weight locations and

shapes is the focus.

2.5 Review of Related Work

The majority of published material on selecting weights is for the

mixed-sensitivity problem. A weight selection process includes choosing the

transfer function to weight and designing the weight to put on this transfer

function. In the mixed-sensitivity design, the transfer functions that are

weighted consist of the sensitivity, S(s); the complimentary sensitivity, T(s);

and the control sensitivity, K(s)S(s). Recall S(s) - (1-G(s)Kb(s))"1 and

T(s) = G(s)Kb(S)S(s), where Kb(s) is the feedback compensator. These

transfer functions, and their relevance to the closed-loop system are covered in

Chapter III. The control sensitivity is commonly excluded from this type of

design since it can be equated to T(s). Easily seen in the SISO case, Kb(s)S(s)

is identical to T(s) multiplied by the inverse of the plant. Because a large

amount of examples are the mixed-sensitivity type, this translates into most

designs being 1 DOF because the three mixed-sensitivity transfer functions

depend nllyf on the compensator in the feedback loop, Kb(s). Now that the

transfer functions to weight are known, consider how the shape of each weight

is chosen.

Coincident with selecting weight shapes for this mixed-sensitivity problem,
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a review of Chapter 4 in [DFT92] may be helpful to the reader. This

reference gives a complete background look at S(s) and T(s), and gives insight

into ways to shape the weights on these transfer functions. The basis of the

weight discussion is the Nyquist plot and the Small Gain Theorem [Zam66],

with the result being a "nominal performance" constraint on S(s) and a "robust

stability" constraint on T(s). Also in [DFT92], Chapter 6 covers plant design

limitations that are dependent on algebraic relationships and the necessity for

closed-loop stability.

A common aircraft example is the H2 and H.. mixed-sensitivity fighter

designs in [ChS88]. The unstable MIMO plant is for a longitudinal flight

controller and uses the same weight selections for both the H2 and H.. designs.

The weight on S(s) has a dc gain of 40 dB, a pole at 0.01 rad/sec, and a zero

at 100 rad/sec. The weight on T(s) has a pair of zeros at the origin with a

gain of 60 dB at 1 rad/sec. Note that these weights are the inverse of the

desired transfer function magnitudes. Since these weights form penalties in

the optimization, they will drive the transfer function magnitudes to their

inverse.

A design using the exact setup as the [ChS88] fighter example is that of

[Har9O]. This is again a MIMO design on the longitudinal dynamics of a

fighter, the F-18. This plant is stable at the chosen design point. Like

[ChS88], both H2 and H. optimal compensators are found. The first design in

(Har9O] uses the identical weight shapes given in [ChS88], while a second
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attempt contains a modification to the weight on S(s) because of practical

limitations on actuator deflections and rates. In this case T(s) instead of

Kb(s)S(s) is weighted in the designs.

The mixed-sensitivity approach is also examined by [Ino9O], with detailed

explanations on weight shape selections for S(s), T(s), and Kb(s)S(s).

Examples in [Ino9O] also show a plant that is inner loop "conditioned" through

classical techniques, followed by the use of the optimal control design on this

"conditioned" plant. The design examples in [Ino9O] are not for specific

aircraft as in the previous references, but the choice of including this

reference is based on the thorough descriptions of weight designs.

Although most references discuss weight shapes for the mixed-sensitivity

problem, they address only a 1 DOF design. A major point in this thesis is

not only designing for good sensitivity, like these methods can provide, but

also for closed-loop tracking. Because of the necessity for tracking, a 2 DOF

controller will be utilized for many designs. This warrants a summary of a

recent 2 DOF design.

In most 2 DOF tracking designs the transfer function S(s)G(s)Kf(s), where

K,(s) represents the feedforward compensator, is weighted in addition to the

mixed-sensitivity ones. This transfer function is for closed-loop tracking and

includes both the feedforward and feedback compensators. The paper of

[MrR92], on which this work follows, is a collection of 2 DOF designs using

three optimization techniques. The different designs come from using these
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methods (H2 , H., and mixed H2/H..) on specific parts of an F-16 longitudinal

tracking diagram. The plant is unstable, nonminimum phase, and basically the

same plant used in this work. The tracking weight chosen in [MrR92] is a

low-pass filter with a dc gain of 40 dB, and a pole at 0.02 rad/sec. The only

other frequency weight in this design is on S(s); a dc gain of 40 dB, a zero at

1 rad/sec, and poles at 0.01 and 1000 rad/sec.

With the combination of the overview on optimization techniques and

related work in choosing which transfer functions to weight (and weight

shapes), the specific thesis problem can be set up. The development of the

design model and methods to evaluate the compensators that result from the

optimization routines are discussed in the upcoming chapter.
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IIl. Pre-Design Process

3.1 F-16 Model Development

This section presents the buildup of the longitudinal short period

approximation model, and is followed by discussions on the evaluation process

and design limitations. The development of the acceleration command

following plant consists of the combination of an actuator servo, the short

period approximation of the F-16 (for elevator commands), and a time delay

representing the accelerometer measurement hold. The flight condition for

this linearized model is Mach 0.6 at sea level. The plant used for

compensator designs utilizes the sho Vrit d mode only, whereas a "truth"

plant that also contains the phugoid roots will be used as a stability measure

and for one simulation. The design model that contains the short period mode

(with servo and approximated time delay) is referred to as the lower order

model (LO), while the one that includes the phugoid (along with increased

orders of the servo and time delay approximation) is called the higher order

model (HI). Components that make up these systems are a combination of

those used in [Bic89] and [MrR92].

A series connection of the first order servo, the short period dynamics,

and a first order Pad6 approximation is used for the lower order model

buildup. The lower order model has four states; two from the short period
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roots, and one each from the servo and time delay. The state space

representations for the actuator, the short period plant, and the first order

Padd approximation are shown in Equations (3.1) through (3.3), respectively.

[6]-: [ -20 ][8,4 ] +[ 20 ][8,.]-(.1

A I -1.491 99 [0198 (3.2a)[9.753 -0.960J qJ l19.04.[° (.a

[d] [-40][d] + [1][N,] (3.3)
[Nz•.,] =[ 80 ][ d ] + [-11 ][N,]

where the servo input 8.. is the input to the system, 8. the elevator

deflection, ot the angle-of-attack, q the pitch rate, NZ the normal acceleration,

and N,,. the delayed normal acceleration. Equation (3.1), with a pole at -20,

is a first order approximation of the aircraft's servo. Equation (3.2a), the

short period approximation, can be represented in angular units of radians or

degrees since all variables are angular measures. Radians will be used in the

development of state space models in this chapter, although simulation outputs

will be shown in degrees. The short period roots of Equation (3.2a) are 1.903

(unstable) and -4.354, and the reason this is (3.2a) is that the "C" and "D"

matrices for the acceleration feedback system have not been derived at this
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point. Examining Equation (3.3), the "d" state is only a dummy state used to

represent the delay from the digital sampling of acceleration. A period of

0.05 seconds is chosen as a reasonable measure for this delay, and results in

the state space of Equation (3.3) when using a first order Padd approximation.

This approximation has a pole at -40, and introduces a nonminimum phase

zero at +40.

In deriving the equation for normal acceleration, the location where this

value is measured must be considered. For F-16 acceleration command

following this measurement is needed at the pilot's location. The

measurement is in the body's z-axis, with a positive acceleration up, and the

resulting expression in G-level. The linearized equation below gives the

normal acceleration at the pilot's seat with a positive measurement up

[Bic89].

N= -[Uo(it-q)-XA] 1432.2 (3.4)

where X. is the distance from the aircraft's center-of-gravity to the

accelerometer location, and Uo is the forward velocity. The output

acceleration, Nz, is in G-level for angular units in radians. X. is chosen as

14 feet for the F-16, and from the flight condition of the linearized aircraft

model UO is 670 feet/sec. Utilizing Equations (3.2a) and (3.4), the "C" and

"D" matrices to complete Equation (3.2a) can be found. This allows the
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series connection of the design model components. With the above mentioned

values for X. and Uo, the following can be added to Equation (3.2a)

[Nz] =[35.264 -. 334] ]I + [-4.367][8,] (3.2b)

Now the first order servo is connected in series to the plant, and then this

combination is joined with the first order Pad6 approximation. The design

model as represented below is now complete.

a -20.0 0 0 0 8 20

i -0.188 -1.491 0.996 0 a 0

4 -19.04 9.753 -0.96 0 q 0 [8.]

a -4.367 35.264 -. 334 -40 d 0
(3.5)

8

[N,,.] = [4.367 -35.264 0.334 80] + [0 ]•[8.]
q

d

The higher order model is not shown connected in series like the lower

order model since the higher order one will only be used to aid in the

evaluation of controllers in Simulink" [Sim92], not in the actual compensator

designs. The simulation models will be explained in the next section. A

fourth order Padd approximation is used to obtain transfer functions for the
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higher order model, and a fourth order servo is combined with the fourth

order "truth" plant (two extra plant states are necessary for the addition of the

phugoid roots) to yield a total twelfth order system. The servo used in the

higher order system is

V __s) 1.491x10 7

8. (s) (s+20.2) (s+ 144.8) (s2 +105.ls+5100)

Again for the "truth" plant the phugoid roots are included and the result is the

fourth order state space model of Equation (3.7). The added phugoid roots

are located at -0.0086 ± 0.071j.

6 -0.01485 37.382 -32.2 -17.94 u 0.00214

a -0.00008 -1.491 -0.0013 0.996 a -0.188

0 0 0 1 0 0
q -0.00036 9.753 0.00029 -0.96 _q. -19.04

U

[Nz] = [0.0015 35.264 0.0272 -0.334] + [-4.366][8,]

q.

where u is the forward velocity and 0 the pitch angle. State units in the above

equation are u (ftl/sec), a (radians), e (radians), q (radians/sec), and N, again

in G's. The fourth order Pad6 transfer function for a 0.05 second delay from

Pro-Matlab" [PM90] is Equation (3.8).
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N,(s) _ s4 - 400s3 + 7.2x104s 2 - 6.72x10 6s + 2.688xi0s (3.8)

Ni(S) s4 + 400s3 + 7.2x104s 2 + 6.72x106s + 2.688x10s

The above equation is only used in finding transfer functions for the higher

order model (HI); in time simulations a zero order hold replaces it. A

complete listing of all state space matrices along with associated zeros and

poles is provided in Appendix A.

For the differences in the lower versus higher order magnitudes,

Figure 3-1 shows that the midrange frequency correlation is very good.

Outside of this midrange, however, there is quite a large difference in

magnitude. The higher order model is the dashed line, showing the additional

60
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S0- 1
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Figure 3-1. Lower Order Plant Magnitude Vs Higher Order
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phugoid roots that stand out at low frequency; furthermore, the higher order

model has a fourth order servo that can be seen to roll off much steeper than

the first order case. The difference in going from a first order Pad6 to the

fourth order one is not a factor in the magnitude plot since a time delay can

be thought of as a pure phase shift. Magnitude differences in these models

can also be found in a multiplicative or plant additive type of uncertainty

[Dai90]. These uncertainty plots appear as Figures 3-2 and 3-3, respectively.

Again, the low frequency uncertainty is dominated by the added phugoid

roots, and the high frequency by the difference in servo dynamics. Now that

the aircraft model is familiar, the compensator evaluation setup is examined.
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- Figure 3-2. Multiplicative Uncertainty
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Figure 3-3. Plant Additive Uncertainty

3.2 Closed-Loop Evaluation Models

The model used in finding transfer functions and in the simulation of

lower order time responses is Figure 3-4. This diagram represents several

models in itself. First, it serves as the closed-loop model that a controller is

designed for. Therefore, it is also the model that remains after design weights

are removed. The actual simulations for the lower order system (N. doublet,

N, step, and a state perturbation) are based on this diagram since it is used

for the original compensator design. Hence, the closed-loop transfer functions

are derived from Figure 3-4. Following the lines of deriving the closed-loop

transfer functions, this diagram also serves as the transfer function model used
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W1

Wd

Figure 3-4. Transfer Function/Lower Order Simulation Model

in Simulink'. Note that the transfer function models for both the higher and

lower order models follow this same structure. Open and closed-loop transfer

functions from any points on this diagram are found by just adding

input/output blocks to the Simulinktm model. By examining Figure 3-4,

Laplace domain transfer functions can be obtained for the normal acceleration

plant output (y,) and the control usage (u), from both the white noise inputs
(w) and the commanded input (r). These transfer functions are Equation (3.9)

for a 1 DOF system, with hre(S) and Ws known. Note that for a 2 DOF

system, the tracking closed-loop transfer function from r to y, in

Equation (3.9) is S(s)G(s)Ia(s), not -T(s). The differences in the I DOF and

2 DOF systems are examined in the H 2 designs of Chapter IV.
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y,(s) = - T(s)r + S(s)GrN(s)wl + T(s)Wnw2

u(s) = K(s)S(s)r + Kb(s)S(s)Grd(s)wl + Kb(s)S(s)Wfw2

where S(s) = (1-G(s)Kb(s))-1 , T(s) = S(s)G(s)Kb(s), and

Grd(S) = C,(sI-A,)-'rWd(S) for a SISO case. From the definitions of S(s) and

T(s), which are explained at the end of this section, it is clear that

S(s)-T(s) = 1 for this positive feedback system. In Equation (3.9) the Grd(S)

transfer function represents a disturbance entering at the plant output, although

in the diagram (Figure 3-4) the actual disturbance is shown directly entering

the plant. This wind gust feedthrough is plotted in Figure 3-5 and

-10 -- i. . . . . . . . . . . . .

-20

-30

0 -40

S-50

X-60

-70

-80

010- 10-" 10-i 10o 101 10' 103
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Figure 3-5. Magnitude of Grd(s)
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will be important in frequency weighting strategies. The magnitude plot

clearly shows higher gain at low frequencies, below around 10 rad/sec, with a

low frequency gain of 0.1 (-20 dB). The value of W. in Equation (3.9), and

in the design/simulation models, is chosen to be 0.025 G's.

The wind disturbance that enters the plant as an a perturbation is a Haines

approximation to the Von Karman model represented by Wd(S) [ACD77]. The

Von Karman wind disturbance model and the Haines approximation give the

state variable model in Equation (3.10).

d= -2 L Xd+ 2 w (3.10)

where Uo is the aircraft forward velocity in feet/sec, L is the scale length in

feet, w the white noise input, and o is the level of disturbance. Typical values

for this disturbance level are given in [ACD77]. The value chosen for a,

6 ft/sec, is the same as in [MrR92]. Completing the other variables in

Equation (3.10) are the scale length L = 200 feet, and the aircraft speed of

Uo = 670 feet/sec. With the above values in the Von Karman model

approximation, the wind disturbance is

[id] -=6 .7 1[xd] + [0.0187[] w(1

[C] =[lI[Xd] +[O][W]
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In Equation (3.11), r is the wind disturbance output in radians. As mentioned

previously, the wind enters the system as a perturbation in a, represented by

the static r matrix in Figure 3-4. This F matrix for the lower order design

model is [0, -1.491, 9.753, 35.264]T, i.e. the second column of

Equation (3.5). In the same fashion for the higher order model, the F matrix

is the second column of Equation (3.7).

The RMS value of the wind disturbance model for a unit intensity white

noise is used in the disturbance model, causing the white noise input to the

wind model in SimulinkT* to be multiplied by a 12.23 value. The reason for

this is that the Simulink' white noise block does not produce the noise with

intensity one, rather a "pseudo" white noise with RMS = 1. The value of

12.23 is the wind transfer function's RMS divided by the wind model output

RMS for the Simulinkt white noise. A Lyapunov equation on the wind

disturbance state space, Equation (3.11), gives the RMS for a zero-mean white

noise of unit intensity [KwS72]. The RMS of the wind transfer function

output is found by running the Simulinkt white noise through the wind gust

transfer function, then calculating the standard deviation of the output

(zero-mean signals are assumed). The mean was verified as being of small

magnitude in cases of 1000 points, and as such is not subtracted from the

input signal. The mean not being exactly zero will surface in some simulation

plots, but does not alter the point of showing general trends. Also important

is the fact that changing the sample times of simulations can change the RMS
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of the wind transfer function output, but the only time lengths that are used (5

and 10 seconds) have RMS values within five percent of each other. The

same scale valtic is subsequently used for both simulation time lengths because

of this small difference. The seed, which operates on SimulinkT just as in

Pro-MatlabTM , is also held constant for the wind noise input since changing this

can significantly alter the output RMS of the wind model. A different seed is

used for the measurement noise to prevent any correlation.

Returning to the sensitivity transfer functions S(s), T(s), and Kb(S)S(s),

these can be explained easier with the combination of Equation (3.9) and

Figures 3-2 and 3-3. Possible weight shapes for these transfer functions were

examined briefly in Chapter II for related work, but the significance of these

was not given. Sensitivity is the response of the feedback system to

disturbances at the plant output. It can also be explained in terms of the

sensitivity of the closed-loop system to infinitesimal perturbations in the plant

[DFT92]. S(ja) having a small magnitude (note that s = jw) implies that the

closed-loop system is insensitive to output disturbances and plant variations.

At frequencies where I Sao) I > 1, the feedback system actually amplifies the

disturbance input. For large loop gains, i.e. large I G(jo)Kb(jw) I, the

magnitude of sensitivity is approximately the inverse of the loop gain. For

small loop gains, I S(jw) I approaches unity (0 dB). Complimentary sensitivity

represents the response of the closed-loop system to sensor noise. The inverse

of I Tow) I is also a measure of stability margin against unstructured
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multiplicative uncertainty [FrL88]. A small magnitude of TOjw) reduces the

sensor noise for the closed-loop system, whereas I T(jc) I > 1 amplifies the

sensor noise. IT(jc) I follows the loop gain at high frequencies, and is

approximately unity (0 dB) at low frequencies. Sensor noise and disturbance

feedthrough to the plant input (or control usage u) is determined by

IKb(jwC)S(.j ) 1, as in Equation (3.9), and this magnitude is also the inverse of

allowable plant additive uncertainty. At low frequencies and high

compensator magnitude, I KbO(j)S(jW) is approximately the reciprocal of the

plant magnitude. With the model buildup and evaluation schemes covered, a

continuation of the discussion on sensitivity transfer functions is given for

limiting factors in this F-16 design.

3.3 Design Limitations

This section presents possible limitations that affect a design for an

unstable nonminimum phase plant, and is mainly a combination of [FrL88] and

[DFT92]. It is well known that poles and zeros of a plant in the right-half-

plane (RHP) can cause design specifications to not be achievable; therefore,

an investigation of possible difficulties is warranted.

The magnitude of S(s) is the reciprocal of the distance from the Nyquist

plot of G(s)Kb(s) to the critical point, since S(s) = (l-G(s)I4,(s))-'. IS(ji) l is

less than one where the Nyquist plot of G(s)Kb(s) is outside of the unit circle

centered at the critical point, and I Soco) I is greater than one when the plot is
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inside of the unit circle. This can be related to stability since a nearly

unstable system will have a large I S II and comes close to the Nyquist plot

critical point. Classical gain and phase margins only measure the distance

from the critical point to the Nyquist plot in certain directions. Furthermore,

large classical margins can be evident even when the Nyquist plot comes close

to the critical point. For this reason the simultaneous changes in gain and

phase represented by the complex margins will be the concentration, since

these are a worst case margin. The value of 11 Sf is independent of

frequency though, and a large perturbation in G(s)Kb(s) at frequencies away

from the critical point may be possible. In compensator evaluations, the

complex margins will be given by 11 SI and 1l T I, [Dai90].

Nonminimum phase zeros of the open-loop transfer function create a direct

analytical tradeoff in a design on S(s). The result is that desirable magnitudes

of S(s) at certain frequencies must be given up to improve the sensitivity

magnitude at other frequencies [FrL88]. It is not possible to gain a given

amount of IS(ac) I at one frequency band by allowing I S w) I to exceed one

by a small amount over a large frequency range, when a RHP zero is in the

plant. This phenomenon is called the "waterbed effect" and limits the

effective length of the jw-axis [DFT92]. The *waterbed effect" differs from

the Bode area rule on sensitivity magnitude. For this F-16 plant, the Bode

area rule is not valid since there is a RHP pole, but a sensitivity area rule has

been extended by [FrL88] for unstable plants. The results of this extension
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are that the area above the 0 dB line for I Sow) I exceeds the area below

I S(jw) I (for a linear frequency scale), and the actual area difference depends

on the location of the unstable pole. Bode's method gives iAi1 areas above

and below 0 dB. A formula for finding a bound on the smallest value of

11 S 11 ., that depends on the Blaschke product and the location of RHP

poles/zeros, is given by [Mid9l].

To summarize knowledge on S(s) for this plant, it is known that an area

rule does apply and that the area below the I Sow) I = 0 dB line cannot

arbitrarily be traded for an area above 0 dB because of the RHP zero. So the

result is that if I Sow) I is pushed down at certain frequencies, including a

peak, the magnitude has to pop up at other frequencies.

Complimentary sensitivity, T(s), also has constraints due to this F-16

design plant. The effect of RHP poles in G(s)4(s) on T(s) parallels the

development of RHP zeros limiting sensitivity. Similar to S(s), properties of

T(s) must be traded at different frequencies. Equation (3.3.6) of [FrL88]

gives the integral constraint on T(s), and shows that since T(s) is related to

multiplicative uncertainty that a tradeoff of I T(jw) I will affect both the

allowable uncertainty and sensor noise attenuation. According to [FrL88],

design tradeoffs on T(s) are aggravated by RHP zeros. As in the sensitivity

case, a formula for finding the smallest value of I T 11 . is given by [Mid9 1].

In this section some possible designs problems for unstable, nonminimum

phase plants have been examined. Other factors, such as the initial response
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for a nonminimum phase plant being in the reverse direction, do. not present

significant difficulties in this case. These limitations, combined with the F-16

model buildup and compensator evaluation scheme, complete the preliminary

design process. Now weight locations and shapes can be investigated, with

the first designs utilizing H2 optimization.
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IV, - 2  gn

4.1 H6/LOG Regulator

The objective of the optimal H2 designs presented here is to develop a

regulator that limits white noise feedthrough to the normal acceleration plant

output (y.) and the control usage (u). Regulation of initial conditions, such as

in the a state, is also desired. It is known that LQG is a special case of H2

optimization, depending on weight locations and types. The basic LQG design

uses static weights on both the control usage and states, and the basis here is

to show trends by varying these two parameters. These quadratic weighting

matrices can be seen in the LQG performance index

j = fo"(xTQx + UTRu)dt (4.1)

where Q is the state weighting (not to be confused with Q(s) from the JQ-type

compensator parameterization) atid R the control weighting. Although in this

design the control usage and states are weighted statically, the H2 methodology

has the potential of including frequency weights in the design model.

Furthermore, there are many popular LQG approaches (not discussed in this

work) that examine choosing specific values of Q and R. The H2 regulator

design plant, showing the static weights on the control usage and states, is

Figure 4-1. Since only one compensator is being designed in this
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Wd

Figure 4-1. H2/LQG Regulator Diagram

diagram, it will be a one degree-of-freedom (1 DOF) controller design. The

weight on the states is WzCg, which actually means that the weight is on N,

since N,, = CIx. If a particular design requires a weight to be placed

directly on a state, all that is necessary is to move the location of W, to the

left of the C. block in Figure 4-1. By moving the weighting block to this

location, all the states plus the plant output could be weighted separately. The

weight on control usage will be the scalar W,.

Energy from the white noise inputs, w, and w2, will be minimized with

respect to the chosen outputs, z, and z2, by the compensator design.

Figure 4-1 shows the state space matrices of the aircraft plant as A., B., and
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C.. These plant matrices represent the lower order model from the previous

chapter; recall these include approximations for the second order short period,

the first order servo, and the first order time delay. The wind disturbance for

the design model uses the combination of Wd(s), r, and the input noise wl.

The white noise input w2 is added to the feedback signal as a measurement

noise approximation. Notice this 1 DOF regulator problem has its

compensator located on the right side of the summing junction in Figure 4-1.

To examine tracking properties the feedback compensator has to be duplicated

to match the 2 DOF simulation/transfer function model, Figure 3-4, that

includes a feedforward compensator. Furthermore, since the H2 design of

Figure 4-1 does not recognize the sign of a reference input that is zero, the

feedforward compensator must be negated to get the proper output response.

For the closed-loop model, the transfer functions for the output of the

plant and the control usage to all inputs are known. Repeated from

Chapter III for a 1 DOF system, these are

yg(s) = - T(s)r + S(s)GrN(s)wl + T(s)Ww 2  (4.2)

u(s) = Kf(s)S(s)r + Kb(s)S(s)Gr(s)wl + K (s)S(s)W~w2

In Equation (4.2) the output weightings W, and W, are removed since these

are weighting functions for the performance index only. The noise inputs w,

and w2 are still included since they are in the simulation. Before the H2

optimization algorithm can be used, the design plant must be represented in
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state space form. From Chapter II, the state space for the H2 design plant

(denoted as P) is

i = Ax + Bw + Biu (4.3a)

z = Czx + D.,w + Dmu (4.3b)

y = Cx + D,,w + Dyu (4.3c)

Using the H2 regulator diagram, Figure 4-1, the state space matrices in

Equations (4.4) through (4.6) can be determined.

S[:I=[' L] [ 011+ oJ oI + [8] [ ul (4.4)

-I + I + [u] (4.5)
2 WZC. 0 X4 XS 0 0 1 W21 0u 45

[]= [Cw []w] [ ] +[O[u] (4.6)

This is the point where the H2 constraints discussed in Chapter II must be

examined. The basic conditions that are checked here include D, = 0,

DYS = 0, I..D. full rank, and DW.T, full rank. These will be met by the

design with a nonzero W. and W,, so the design diagram is properly set up

and the compensator development can continue.
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4.1.1 HL/LOG Weight Selection

The design problem now centers on which signals to weight, and how to

weight these signals. From the design diagram of Figure 4-1, the signals to

weight (control usage and the plant output) have already been selected. Now

consider how to choose these weights, keeping in mind that H 2 optimization is

minimizing the 2-norm of the transfer function matrix T,. As explained in

the basic H 2 diagram of Chapter II, this transfer function matrix will have

white noise inputs (w), and designer chosen outputs (z). W, and Wz are shown

in the H 2 regulator's T. as

[WKb(s) SOs GmWS) W~K (S) S(s)W3  (7
T [ WZS(s)Gr,(s) WT(s)W J4.)

An examination of Equation (4.7) should be used ir conjunction with

Equation (4.2) to determine choices of W, and WZ. It is clear that as the

dimensions of T, are increased, by adding more input white noises or

outputs, it is easy to lose sight of the minimization process with respect to the

individual transfer functions in T.,. An important fact from Chapter II is that

the 2-norm is an integral over all frequency, so looking at a logarithmic scale

is deceiving since the integral is calculated on a linear scale. Recall that W.

and Grg(s) are known fixed quantities in T,., with the magnitude plot of Grd(s)

appearing as Figure 3-5. It was shown that this transfer function is
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predominantly low frequency, below 10 rad/sec, with a magnitude around

0.1 (-20 dB). In comparing this magnitude to that of the static W, (0.025), it

is evident that the Grd(s) dc gain is about four times greater than W,. Since

Wn is supposedly an "all frequency" signal, it will be significant when

integrating over all frequency. Looking again at T,, the left column that

contains Grd(s) will dominate the low frequency range. Similarly, the right

column with W. will dominate the high frequency range since Grd(S) has rolled

off. From the fact that both design weights are scalars, an iterative search of

WC and WZ will suffice. Now that the design background has been analyzed

and the weight selection determined to be simple iterations, the weight

selection results are investigated.

4.1.2 H2LLOG Results

Although cases of W, = 0.01, 0.1, 1, 10, and 100 are examined, only the

magnitude plots and time responses for the last three will be shown because of

the complexity of graphics, and since the first two cases are unreasonable

from a practical aspect. With small control usage weightings in these first

two cases, the elevator deflections and subsequent responses are very fast and

oscillatory. Margins for all five cases will be shown. Remember the object is

to design a regulator that hopefully has good margins, since these are not

guaranteed or designed in this setup. Even though W2 has not been

mentioned, it is equally as important as W,. As a matter of fact, it is exactly
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the same as varying W,. This can be seen by first looking at the conflict in

the two parameters. If W, and W, are raised by equal ratios, the resulting

controllers are identical. The only thing different would be the weighted

value of the 2-norm of TW, and its value would go up by the exact same ratio

each time. An example would be using W, = 0.1 and W, = 1, then using

WC = 1 and W. = 10. Again the only difference in the two would be the

2-norm of TW being a value ten times higher in the second case. Thus, the

value of Wz is held at one and WC is varied. The values of W, examined,

weighted 2-norm of T., and margin trends for these various Wc values are

shown in Table 4-1.

Table 4-1. H2/LQG Results (W,. 1), LO

ii Bode Gain Bode Complex Complex
we T. 12 Magn Phase Gain Ph~ase

Wc Weighted Margin Margin Margin Margin
(dB) (deg) (dB) (deg)

0.01 0.25 -7.7, 8.6 ±78 -7.7, 8.3 ±36

0.1 0.26 -7.6, 8.9 ±79 -7.6, 8.2 ±36

1.0 0.29 -6.4, 8.9 ±83 -6.4, 8.8 ±37

10.0 0.43 -3.3, 21 ±34 -3.3, 5.5 ±27

100.0 1.06 -1.5, 8.9 ±14 -1.5, 1.9 ±11

As noted in Table 4-1, the 2-norm of T=, includes weights, and this can be

used as a way to expose conflicting weights that may have been chosen.
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Recall that Bode gain and phase margins are for a pure change in gain or

phase, and the complex margins are based on the magnitude plots of

sensitivity and complimentary sensitivity. It is obvious from Table 4-1 that

the complex margins decrease as W, rises from 1 to 100, and these margins

are close from W, = 0.01 to 1. The case of W, = 10 is peculiar to this

example with its increased Bode gain margin.

With concern for stability of the higher order model, closed-loop transfer

function poles are also checked for each compensator. In examining the

higher order system poles, each case reveals exactly one root just to the rght

of the origin. This unstable pole slowly migrates farther into the RHP as the

value of W, increases. For W, = 1 the unstable root is at 0.0595, and ends

up at 0.1434 for W, = 100. Remember that the unstable root is only

occurring in the higher order transfer function model, not in the lower order

model. From the H2 background in Chapter II, recall that the compensator

will stabilize the lower order model. This unstable root will be noticeable in

the upcoming higher order step response.

The analysis now shifts to T.., transfer function magnitudes, and time

responses. It is known that the 2-norm of Tz, is being minimized with a

stabilizing (not necessarily stable) compensator, and that this optimization is

conducted through an integral over frequency. The key point here is that the

integral is nMt based on a logarithmic scale. From T., (Equation 4.7), the

bottom elements (WZS(s)Grd(s) and W.T(s)W.) will dominate the minimization
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when W, is very small. The top two elements, WCKb(S)S(s)Grd(s) and

W.Kb(s)S(s)WM, will control the optimization process when W, is large. The

effect on these transfer functions will be seen in the magnitude plots. This

again assumes W, is held at one.

Transfer function magnitudes and simulation time responses for the three

compensators are now examined. In all H 2 regulator plots the solid line

represents W, = 1, the dashed line W, = 10, and the dotted line W•, = 100.

These are also noted on each plot. Use of the lower order model is given by

LO, and the higher order model by HI.

Figure 4-2 shows the compensator magnitude decreasing as W, is raised,

which helps retard high frequency noise amplification by the compensator.

The problem is that the compensator does not have as much freedom to cancel

out the complex zero pair of the plant when W, is at a high value. It is clear

in the W. = 1 case that the compensator is starting to "notch out" the

unwanted plant dynamics. From examining the two cases with lower values of

W, (not plotted), it was seen that the zero pair in the plant is nearly canceled

by the compensator when the open loop transfer function is formed.

The open loop transfer function magnitude, or loop shape, is Figure 4-3.

A desired high gain at low frequencies is definitely missing. Again, the

canceling of unwanted plant dynamics is more apparent in the W, = 1 case,

that does not follow the magnitude dip of the plant as much as the higher

values of W.. Even though the high frequency gain drops more as
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WC increases, the poor low frequency gain does not outweigh the benefit of a

lower noise amplification at high frequencies.

The next frequency plot is the sensitivity transfer function magnitude,

Figure 4-4. This shows that the low frequency wind disturbance will corrupt

the W.f = 100 case the most. The preferred shape would have a low gain at

frequencies under around 10 rad/sec to attenuate the wind disturbance, based

on the magnitude plot of Grd(s). The peak magnitude of each curve explains

some of the trend of decreasing complex margins as W, increases, although

these margins also depend on the complimentary sensitivity magnitude plot. A

sensitivity area tradeoff is also apparent between high and low frequencies.

An important term that appears in both T.. and the control usage

closed-loop transfer function is Kb(s)S(s), plotted in Figure 4-5. From

Equation (4.2), this gives an indication of the noise feedthrough to control

usage. Kb(s)S(s) dominates the top row of T. since these elements are both

the weighted control sensitivity. Hence, the drop in high frequency magnitude

of Kb(s)S(s) as W, is raised is caused by the integral dependence of the H 2

methodology. For high loop gains, the highest is the W, = 1 case, the

magnitude of Kb(s)S(s) is approaching the inverse of the plant magnitude (as

explained in Chapter III). At low loop gains this magnitude follows the

compensator gain shown previously. Furthermore, the inverse of the Kb(s)S(s)

magnitude is the allowable plant additive uncertainty. The W, = 1 case

exhibits the largest allowable additive uncertainty at low frequencies, and the
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smallest amount at high frequencies.

The remaining magnitude plot is the complimentary sensitivity,

Figure 4-6. This represents the measurement noise feedthrough to the plant

output, the inverse of the allowable multiplicative uncertainty, and the

closed-loop tracking transfer function. The measurement noise will be most

evident in the WC = 1 case at high frequencies because of the larger gain.

For the allowable multiplicative uncertainty, the W, = 100 case yields the

most at high frequencies, and the least at low frequencies. It is evident that

none of these three cases will give good tracking since the gain is above 0 dB

at low frequencies and would still roll off too early even if the low frequency

gain were adjusted in the simulation's feedforward compensator.

20
. . . . : ... ... ....... ., .... .....
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Figure 4-6. Complimentary Sensitivity Magnitude, LO
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With the transfer function magnitudes covered, the focus now shifts to

time responses. The first time response plot is the initial a equal to 5 degrees

simulation of Figure 4-7. It is not surprising that as the control weight

increases from 1 to 100, the response goes from a fast oscillatory one with

several overshoots to a slow highly damped one that takes close to 1.5 seconds

to get near a = 0 degrees. Note that low frequency noises affect the

we = 100 case more, and a reason for this is that less control power is being

allowed to correct the nonzero a. Although this is not the plant output, the

magnitude plots of S(s) and T(s) gave insight that low frequency noise would

dominate the plant output for the W, = 100 case. These plots showed the

least low frequency magnitude for noise corrupting the W, = 1 case.

5

-W .= I

o --''..---fi l0-

4-

i• I I I I I I IW

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (see)

Figure 4-7. a from a(O) = 5 deg, LO)
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Control usage appears in Figure 4-8 and confirms the analysis of the

Kb(S)S(s) magnitude on the plant input. That magnitude plot, Figure 4-5,

gives the direct feedthrough of the wind disturbance and measurement noise to

control usage. The measurement noise in the W, = 1 time response is

therefore from the high gain of Kb(s)S(s) at high frequency. Furthermore, on

a smaller graph scale both low frequency noises were seen to corrupt the

W, = 100 case, as Figure 4-5 foreshadowed. The elevator deflection was also

checked and found to be within the 25 degree limit for the F-16. Note that

control usage is the servo input, and elevator deflection the servo output.

Figure 4-9, the step responses for the lower order model, shows large

steady state errors for all three cases. Although a step input is unrealistic for

40

-c=
30 -WC= O

. Wc = 10

2 0 ..... Wc = 100

-to
U -10

-20

-30
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (see)

Figure 4-8. Control Usage (u) from a(O) = 5 deg, LO
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an N, command, the resulting plot serves as a baseline for time response

evaluations. The WC = 100 case is by far the worst, and shows the large low

frequency noise effects that depend on S(s) and T(s). Higher frequency noise

is evident in the W. = 1 case, and it has the least steady state error. Recall

that tracking is not specified as a requirement for this design, and since no

weight is specifically used to help tracking the design process ignores this.

The higher order step response is Figure 4-10. This is included to show

the unstable higher order system explained earlier. As seen in the Wc = 100

case, with the RHP pole farther from the origin than the other two cases, the

unstable root causes a rapid departure of N,. Since the unstable root is very

close to the origin, it does not show up in the ten second simulation for the

7

"°" 
""'".... ....... .................................

.......... -....... .. . ............... .
/

°*/" - Wc=i

Wc = 10

Wc= 100
- /.3-
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0 L 2 3 4 5 6 7 8 9 10

Time (see)

Figure 4-9. N, from N, Command Step, LO
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Figure 4-10. N, from N, Command Step, HI

w= I case, and is barely evident in the W, = 10 case. The remaining

higher order time responses are similar to the lower order ones, therefore they

are not shown.

The conclusions from this design can be summarized in the following:

i). A good cv regulator can be successfully designed for this plant,

although gain and phase margins must be watched since LQG does not

guarantee them. The best regulator for the initial of condition is the W, = 10

case, since the W, = I case had large oscillations and the W, = 100 case is

fairly slow.

ii). The unstable higher order pole near the origin slowly migrates to the

right, on the real axis, as W, rises. This caused the step response departure
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in the higher order plot, that is most evident with the W€, = 100 case (recall

a zero order hold is the time delay in the HI model).

iii). Any form of useful tracking seems to have been a failure, but is not

asked for in the design diagram.

iv). As W, rises, more low frequency noise will corrupt the plant output

and control usage, and less high frequency measurement noise will affect both.

This is a direct result of the transfer function magnitudes, that are again

weighted statically. Specifically the low frequency magnitudes of S(s), T(s),

and Kb(s)S(s) all rise as W, increases. The high frequency magnitudes of S(s),

T(s), and Kb(s)S(s) all decrease as W, increases.

v). The compensator cancels the plant's complex zero pair better with the

lowest control weighting (W, = 1), which also gives the highest compensator

magnitude at all frequencies when compared to the other W, cases.

vi). The open-loop transfer function magnitude (loop shape) decreases as

W. increases, and to a much larger extent at high frequencies.

vii). The complex gain and phase margins decrease substantially as W,

rises from 1 to 100.

With these in mind, the issue approached is the case of the higher order

transfer function model being unstable, and the transfer function magnitudes

(S(s), T(s), and Kb(s)S(s)) not being shaped to both reduce noise levels and

give some form of closed-loop tracking. This leads to the following section

on H2 sensitivity.
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4.2 112/LQG Sensitivity

The purpose of this section is to improve on the instability of the higher

order closed-loop model from the previous LQG design, with the overall

objective being to robustly design a stabilizing H 2 compensator by use of a

weighting on sensitivity. It was also apparent that the basic LQG design

exhibited poor tracking, but the tracking problem will not be directly

addressed in this section. Although the goal here is to stabilize the higher

order transfer function model, the key is to not lose the good regulation

properties of the basic LQG design in the process. This approach of trying to

stabilize the higher order model will depend solely on increasing the complex

margins of the lower order system. By adding a dynamic sensitivity weighting

to the H2/LQG design, it is possible to affect the sensitivity transfer function

so that complex margins may be improved. Not only can these complex

margins be altered, but also the wind disturbance that reaches the plant output

can be significantly reduced.

The sensitivity weighting is included in the design model as shown in

Figure 4-11. This weight, W,(s), is a transfer function which introduces the

first frequency dependent weight to the H2 design process. By placing this

frequency weight on S(s), disturbances entering at the plant output can be

minimized since the low frequency gain of S(s) can now be lowered. The
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Figure 4-11. H2/LQG Sensitivity Diagram

closed-loop transfer functions are repeated below to emphasize the significance

of S(s) on the low frequency wind disturbance that reaches the plant output,

from the white noise wl.

yg(s) = -T(s)r +S(s)GO(s)wl +T(s)W~w2  (4.8)

u(s) = Kf(s)S(s)r + I 1(s)S(s)Grd(s)w 1 + Kb(s)S(s)Ww2

The magnitude of Grd(s), plotted in Chapter III, is again a low-pass filter with

energy mainly below 10 rad/sec.

The H2 design diagram, Figure 4-11, is expressed in the required matrix

form of the design plant state space by Equations (4.9) through (4.11).
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is* A. r o 0xg o o 0 W SBw,

-- 0 Ad 0 xd + Bd 0+ [u] (4.9)

BCs 0 A, x, 0 B,W W0w

Zi 0 0 0Ox 0 0W.
z2 = W-C1 0 0 Xd + 0 0 + [u] (4.10)

z 3 [DC 0 C, x 0 D.W 1]w 0j

xS

[y]=[CS 0 0] Xd +[0 Wn] 'I + [0]I[u] (4.11)
W2

.X8

Again the first things to check are the basic H 2 constraints on D,,, Dr-, D=,

and D,,. As long as the scalars W, and W. are nonzero, the matrices of

I,,D.m and DyD are full rank. It is evident that Dr, = 0 is satisfied, but

requiring Dz. = 0 directly limits D, (the *D" term of the sensitivity weight's

state space) to be zero, since W. cannot be zero from the previous constraints.

This means that W,(s) must be strictly proper, i.e. the W,(s) magnitude must

roll off at least 20 dB/decade. If W.(s) were to have a nonzero "Dw term, the

optimization problem woulu :lI-posed. From a physical standpoint, a

nonzero "D" term in W,(s) would give a direct path of the infinite energy

white noise to tf,- performance index.
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4.2.1 H2/LQG Sensitivity Weight Selection

Knowing that W.(s) must have at least a 20 dB/decade roll off, the

question of exactly what W,(s) should look like is now examined. Since the

weight is chosen to represent the inverse of the desired sensitivity transfer

function magnitude, a low-pass filter is needed. This low-pass filter will add

only one state to the optimal H2 compensator. Examining Ta,

Equation (4.12), it is seen that W,(s) directly weights S(s) in the bottom row.

WKb(s)S(s)G G(s) W.Kb(s)S(s)W1'

Tw WS(s) Gr(s) WJT(s)WI (4.12)

After the 2-norm of T• is minimized to a certain value, it is known that the

2-norm of each individual transfer function inside TW can be at most equal to

the overall 2-norm of T.. From this, think of S(s) as being the inverse of

W,(s) so that the resulting 2-norms of Tw's bottom elements are at most equal

to the 2-norm of T.. However, this does not work in reverse order. It is not

true that if each individual transfer function's 2-norm is less than some value,

then the 2-norm of TW will be that value. To create a basis for judging the

individual transfer function elements of T,,, recall that several of the

components in these elements are known. Known vilues in Tw are

W=,fo 0.025, W. ffi 1, W, (a chosen scalar), the magnitude of Grd(S), and the
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design weighting W,(s). When W3(s) has very high gain at low frequencies, it

is seen from T, that the bottom row will impact the low frequency range in

the 2-norm calculation. It is also known that S(s) must eventually go to 0 dB

at high frequency since the lower order model rolls off, as in most physical

systems. By choosing W.(s) as the inverse of S(s), the H2 design methodology

should return a compensator that gives a sensitivity function shaped like that

which is desired at low frequency, although this goes back to the integral's

dependence on frequency in the 2-norm calculation. The high frequency area

will be dominated by the right column of T. (from W.). Even when W,(s)

has large magnitude at low frequencies, the 2-norm of T. will not be

controlled at high frequency by the T,(3,2) element because W,(s) has to roll

off there. When the overall magnitude of W,(s) is small, the sensitivity

weighting is nullified and the design returns to the previous LQG type; only

this time there are unnecessary compensator states because of the weight being

a transfer function.

A first order sensitivity weighting transfer function, the low-pass filter, is

given by [Ino9O] as

WS(s) - ( (4.13)
( S+e)

In Equation (4.13), co is a measure of the desired W,(s) 0 dB crossover

frequency, and e is a positive number (e -1 ) chosen so that the pole is not a
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pure integrator. A pure integrator would serve to complicate the process by

possibly introducing an undetectable pole. Hence, the value of e will be set to

0.01 in all subsequent work.

As explained in Chapter III, to increase the complex margins that depend

on S(s), the maximum magnitude of S(s) must be minimized. Since this plant

typically yields two peaks for Sojw) I, the focus is to try and equalize these

peak magnitudes by weighting the one at lower frequency. This is

accomplished by altering the dc gain of W.(s), or equivalently the W1 value in

Equation (4.13). The results of changing (ax and W, in this H2 design are now

analyzed.

4.2.2 H2/LOG Sensitivity Results

A total of six cases are examined, with three values of W. and two values

for W,. The values of co. tested include 1, 10, and 100. With W, = 1 for all

cases, the different values of co. are investigated for W, = 1 and W, = 10.

Table 4-2 shows the values for the weighted 2-norm of T, and the margins in

each of these six cases. The boldface row in Table 4-2 represents the only

case out of the six that produces all stable poles for the higher order transfer

function model. Of interest is that the stable case shows a much larger

complex phase margin. In a comparison to Table 4-1 for the same value of

we = 1 (using coi = 10), it is seen that the complex phase margin is around

10 degrees higher, but the complex gain margins have decreased. Other
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cases, specifically the (W, = 10, w. = 1) combination, give better complex

margins over the "best regulator" from the LQG section.

Table 4-2. H2/LQG Sensitivity Results (W-= 1), LO

Bode Bode Complex Complex
Cox we T. 11 2 Gain Phase Gain PhaseWeighted Margin Margin Margin Margin

I (dB) (deg) (dB) (deg)

1 1 0.306 -9.0, 8.7 ±74 -8.6, 8.3 ±37

10 1 0.438 -17.5, 6.1 ±47 -13, 5.7 ±46

100 1 1.56 -26.1, 3.0 ±25 -4.0, 2.9 +21

1 10 0.486 -4.8, 18.4 ±34 -4.4, 7.5 ±34

10 10 0.961 -9.9, 11.7 ±37 -7.9, 7.1 ±35

100 10 3.11 -19.4, 4.7 ±35 -7.1, 4.3 ±33

The concentration now turns to four of these six cases to further evaluate.

Since the W, = 10 value gives desired LQG regulation properties, this is

combined with w. values of 1, 10, and 100. Of importance is that the higher

order transfer function model is unstable in each of these three cases. The

fourth case will be the stable one, (W, = 1, co, = 10). The first look is at the

unstable poles for the W, = 10 cases. Varying co. from 1 to 100 does not

cause the unstable pole to migrate slowly into the RHP like the LQG design

displayed, but this is not the same type of parameter change as with W, (see

the top and bottom rows of T•,, Equation (4.12)). In the LQG design the
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control weighting (W,) was varied, whereas now the control weight is held

constant and the sensitivity weight crossover (at 0 dB) is varied. The

(We = 10, w. = 1) case is examined in greater detail since it will turn out to

be the best regulator in the time response evaluations. The pole closest to the

origin in this case is located at 0.009, whereas in the LQG design this pole

was at a 0.093 value. Therefore, adding the sensitivity weighting has moved

this unstable root of the higher order transfer function model closer to the

origin, and given better complex margins for this particular example. The

stable case has its closest pole to the origin at -0.0004; almost in the RHP,

but stable.

In the following evaluation of these four cases, all plots will have the

three cases of constant W, = 10 (c1 = 1, 10, and 100) denoted by (a. = 1 as

the solid line, (a = 10 as the dashed line, and co. = 100 as the dotted line.

The stable (W, = 1, w,' = 10) case is shown as the dot-dash curve. The

trends of the three unstable cases will be the concentration, since at least two

of these will be practical from a regulation aspect.

The first magnitude plot, Figure 4-12, is.the compensator. The overall

shapes of these magnitudes are very similar. As cw. increases by the factor of

ten, the compensator magnitude shifts up 12 to 15 dB in each of the W, = 10

cases. The only difference shows up around 10 rad/sec where the plant

complex zero pair is being cancelled out better as ca rises. The stable case

appears very close to the cw,, = 100 one. The closeness of these cases goes
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Figure 4-12. Compensator Magnitude

back to what was seen in the basic LQG design with the ratio of W, versus

W.. In this likeness, the same factor of ten ratio is used on both W, and Co.,

but the difference here is that there is an extra row in T. (second row) that

causes the ratio in sensitivity to not produce the exact same compensator. An

example would be using (W, = 1, co. = 10) versus (W, = 10, co. = 100). As

the values of W, and (o, increase, the second row of T,, becomes les

important to the 2-norm calculation. This is assuming the static value of W,

remains at one. Therefore, it is this second row of T,. that keeps the

(We = 1, w,. = 10) and (W, = 10, €o, -= 100) compensators close in

magnitude, but not exactly the same.
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The loop shape is presented in Figure 4-13. This looks more like the

classic loop shape that is desired since there is high gain at low frequency,

and a preferred roll off at 100 rad/sec. The trend is generally consistent as W.

is raised, although the higher (o. value shows the unwanted plant dynamics

being countered better. The stable case appears to notch out the complex

plant zero pair the best.

The magnitude plots of the sensitivity transfer function that are shaped by

W.(s) appear in Figure 4-14. Although the general shape follows the inverse

of W,(s) at low frequency, the starting value at 10' rad/sec is different for

these cases (not a 20 dB spread like W,(s) had). This can be attributed to the

relative unimportance of the 2-norm over the low frequency range and

80

so . . Ox I . . J

0 ............ ... ".... .. ......... -~ W= 100

-10-' O-3 10-t 100 101 10= 100

Frequency (rad/sec)

Figure 4-13. Magnitude of G(s)K(s), LO
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Figure 4-14. Sensitivity Magnitude, LO

the many other elements in T,, that include S(s). The peaks in the S(s)

magnitudes are seen to shift as co. rises (the highest of the two also increases),

which is the cause of the decreasing upper complex gain margin. The shape

of S(s) looks very good at low frequencies in comparison to the pure LQG

designs. This small gain at low frequencies will directly cause a decrease in

the amount of wind disturbance that corrupts the plant output. Furthermore,

the sensitivity area rule and "waterbed effect* are evident in Figure 4-14.

The magnitude of T(s) appears in Figure 4-15. Several results of this plot

stand out immediately. To begin with, the co. = 1 case is clearly a poor

tracker because of the peak centered at 1 rad/sec and the early roll off.
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Figure 4-15. Complimentary Sensitivity Magnitude, LO

The higher peak of this curve will lower the complex margins that depend on

T(s) more than the other three cases. The low frequency gain of 0 dB for T(s)

shows that any low frequency measurement noise will directly feed through to

the plant output, although it is not amplified like the LQG design was (except

above 0. 1 rad/sec). The trend in T(s) is that increasing O,, will cause more

high frequency measurement noise to corrupt y,(s) since the high frequency

gain is increasing with co. The best case for complex margins that depend on

T(s) is by far the stable one. The (a, = I case does have the largest allowable

multiplicative uncertainty at high frequencies, whereas the stable and

(0 = 100 cases show the least.
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Figure 4-16. Magnitude of Kb(s)S(s), LO

The magnitude of Kb(s)S(s) is shown in Figure 4-16, and is again tied to

noise corruption of the control usage. The trend definitely shows that as w.

increases, more high frequency measurement noise passes to the control usage.

All low frequency noises will be attenuated very well since the loop shape has

large enough gain at low frequencies to drive the magnitude of Kb(s)S(s) to the

inverse of the plant magnitude. A predictable trend is shown by this plot as

ca. varies, and again the wc = 100 case is very close to the stable one. Note

that the w, = 100 and the stable cases yield the least allowable plant additive

uncertainty, yet the most high frequency noise corruption of control usage.

This is a direct result of the changing compensator magnitude.
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Figure 4-17 is the a initial condition response for the lower order system.

The co = 1 case is clearly the best of the four that are shown, but it does

exhibit the largest amount of low frequency noise corruption. Both the stable

case and the wx = 100 case again are similar, and undesirable. These last two

cases are very fast and oscillatory, although they do not exhibit large amounts

of noise corruption.

Control usage for the ai(O) = 5 degrees initial condition is Figure 4-18.

This clearly demonstrates that high deflections and fast rates will be evident in

the elevator. Remember that this is the servo input, not the elevator

deflection. Recall that Figure 4-16, the magnitude of Kb(s)S(s), indicates

6

S•x= 1
4- x= 10

wX x 100

stbl

-4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4-17. a from a(0) = 5 deg, LO
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that high frequency measurement noise will corrupt this response more as Co.

rises. This is evident in the control response for the ow, = 100 and stable

cases, both of which also oscillate much longer than the other two cases.

The time response for the N, step command is Figure 4-19.

As expected from the magnitude plot of T(s) in Figure 4-15, the W. = 1 case

shows a very large overshoot. Recall that this co = 1 case is the best

regulator though. Also, low frequency noise corrupts the co, = 1 case the

most, and is a result of the higher magnitudes of S(s) and T(s) at low

frequencies. High frequency noise corrupts the best two trackers the most

( 1 = 100 and the stable case), and again is based on the same magnitudes

10o

Co.. x= 10
60 .... WX = 100

S4o • table80: M(') o1O

-401

-60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (see)

Figure 4-18. Control Usage (u) from a(O) = 5 deg, LO
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of S(s) and T(s). Thus, not only is there a change in tracking as w. varies,

but there also is a tradeoff in the frequency range of the corrupting noise.

Another feature of Figure 4-19 is that the step responses track the 1 G

command value well, unlike the previous LQG design.

2.5

2-.-.----- Wx = 10

6..... )x = 100

1.5 i stable(e

05

-0.5
0 1 2 3 4 5 6 7 a 9 LO

Time (see)

Figure 4-19. N, from Nz Command Step, LO

Higher order responses are not shown since they were similar to the lower

order ones. The unstable pole was not seen in the teii second step response

because of its larger time constant. .

The evaluation results of this design can be concluded in the following:

i). The goal of stabilizing the higher order model has been achieved with

the (W. = 1, co = 10) case, which gives a poor regulator, but a good tracker.
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ii). The complex margins are increased over the basic LQG design's "best

regulator", in comparison to the (Wc = 10, w•, = 1) case, which still exhibits

poor tracking. Although it is unstable, the RHP pole in this case is almost at

the origin (+0.009), which is closer than the basic LQG design (+0.093).

iii). The steady state error for a step input to the lower order mod

very small, whereas the previous LQG step response never returned near 1 G.

iv). Sensitivity was shaped as desired, directly reducing the wind

disturbance feedthrough to the plant output and indirectly provided tracking

performance. By asking for improved sensitivity at low frequencies, good

tracking in some cases has been given.

v). As w, was increased, the compensator magnitude rose at all

frequencies and canceled the plant's complex zero pair better. Likewise, the

magnitude of the loop shape also rose at all frequencies for increasing x..

vi). The high frequency magnitudes of T(s) and Kb(s)S(s) both increased

as wX was raised, which resulted in sensor noise passing to the plant output

and control usage to a greater extent.

vii). The complex margins did not follow a pattern as w, was varied, but

only three values of c. were examined.

viii). The unstable pole near the origin, for the five unstable cases in

Table 4-2, did not follow a migration pattern like the LQG unstable root did.

With these in mind, a 2 DOF system will be examined next to see if

further tracking improvements can be directly achieved.
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4.3 H2/LQG Tracking

The purpose of this section is to demonstrate a 2 DOF H2 controller in the

tracking role. Stability of the higher order transfer function model is again a

desire. Weighting constraints will be continued on the control usage and the

plant output as in previous designs. As a review of the H2 design using the

sensitivity weight, satisfactory inner loop regulation and higher order system

stability is achievable. A problem with this method is in the case of tracking

an input command. In the 1 DOF designs from Sections 4.1 and 4.2, the

closed-loop transfer function from r(s) to y,(s) is -T(s), and from this came the

problems associated with poor tracking performance for the good regulators.

Having this significant limit on performance is somewhat circumvented in the

2 DOF controller design covered in this section.

The H2 tracking diagram used to design this 2 DOF compensator is shown

in Figure 4-20. A tracking weight is added to the previous design, and the

sensitivity weight is removed. The error between the plant output and the

command input w3 is weighted by We(s). This tracking weight, W,(s), is a

low-pass filter designed to allow the minimization of the low frequency error

for an input r(s) to the plant output y,(s) in the simulation model. Raising the

low frequency gain of W1(s) allows the tracking weight to dominate in the

crucial low frequency range, therefore giving a compensator that tracks low
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Figure 4-20. H2/LQG Tracking Diagram

frequency input commands. The feedback controller Kb(S) is the compensator

that determines closed-loop stability and regulation. Although the 2 DOF

setup appears to be the straightforward solution with the feedback compensator

controlling stability/regulation properties, and the feedforward compensator

providing the desired tracking, remember that in this 2 DOF design the

compensators are constrained to share the same poles.

The closed-loop transfer functions for the 1 DOF and 2 DOF controllers

are obviously different with respect to the input signal r(s) (represented by w3

in Figure 4-20). These closed-loop transfer functions are repeated in

Equation (4.14) to stress the relationship between r(s) and y,(s), which is

S(s)G(s)Kf(s). In the previous designs this transfer function is the negated
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complimentary sensitivity, -T(s), and using the magnitude of T(s) is a severe

handicap for tracking (in the cases examined thus far).

yj(s) = S(s)G(s)KA(s)r(s) + S(s)Grd(s)w, + T(s)W.w 2  (4.14)

u(s) = KA(s)S(s)r(s) + Kb(s)S(s)Grd(s)w, + Kb(s)S(s) W.w 2

It is now necessary to set up the 2 DOF design in the required H2 form. From

the design diagram, Figure 4-20, the state space representation for the H2

design plant is

t; Ag r' 0 0, 0 wl'B

i= 0 Ad 0 xd+ Bd 0 0 W2 + [u] (4.15)

tBtC 0 At 0 0 -B0 w.

zi 0 0 0Ox8 0 0 0 Wi W C

Z= WZCs 0 0 Xd+ 0 0 0 W2 + 0 [u] (4.16)

DtCs 0 C t 0 0 -Dt w3  0

Y 0J 0 0 1 +[0W. 0 W2 + 0 [u] (4.17)

The most noticeable difference from the previous forms is in the 2 DOF it is

necessary to have two y's in Equation (4.17). This is from the fact that
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u(s) = K(s)y(s) in the developmental theory, and therefore yields

[u]=[Kf KbI[Y,] (4.18)[Ym

The actual compensator returned by the H2 algorithm is K = [Kf Kb], which is

given in state space form. The "B" matrix of this state space is then broken

up to give the state space of each individual compensator. The "D" matrix is

not of much concern since it will be zero. Having the common "A" matrix in

each compensator's state space again emphasizes the fact that the poles of each

compensator are the same. Checking the four basic H2 constraints on D,

DyU D,, and D.W, it is seen that values of W. and W. cannot be zero, but D,

has to be zero. This directly says that W,(s) must roll off at least 20 dB/dec.

With the buildup now shown, some results of choosing various W1(s) shapes

are examined.

4.3.1 H,/LOG Tracking Weight Selection

W,(s) is the only frequency weight in the tracking design, but this is not

solely to achieve simplicity. Over 100 cases of choosing different frequency

weights for sensitivity, and for a weighting in the feedforward path that will

be referred to as Wr(s), were examined for this section. Also, two locations

were tested for W,(s); one before w3 is fed forward for tracking error and one

after. The basic design results of including only W,(s), leaving W,(s) and
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WA(S) out, are very close to the results with these extra weights left in. Not

only did the cases come very close, but by including only the tracking error

weight the resulting controller size is smaller. The advantage of designing a

smaller compensator outweighs any visible increase in performance from

adding the extra weights, and some of the increased performance for the larger

systems could be a result of just the larger compensator (since Kf(s) and Kb(S)

share poles). Thus, it may be possible to add poles to the W,(s) transfer

function, making it the same order as when W,(s) and W,(s) were tested, and

get a slight increase in performance. The performance differences were

considered trivial in this design. This should not be meant to deter the use of

W,(s) or W,(s) for another example, but with this plant and the numerous

combinations explored, it turned out to be undesirable.

W,(s) may be a possible "over" constraint, as seen in T.. for Figure 4-20,

given by

WKb(s) S(s)Grd(S) WKb(s)S(s)W, WCKf(s)S(s) 1
TM. W.S(s)Grd(S) W.T(s)W, WZS(s)G(s)K,(s) (4.19)

L W 5(s)S(s) Grd(S) W,(s)T(s)W. W,(s)(S(s)G(s)K,(s)-i)J

and by comparison of Figures 4-20 and 4-11. The Tz(3, l) transfer function

is a direct constraint on S(s), just as it appears in the previous section. Using

W,(s) is not needed to shape S(s) for good tracking as in the 1 DOF designs,

but it is possible to shape S(s) at low frequency through the tracking weight.
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Although this is an added benefit of the tracking design, the real importance is

in the (3,3) element of T.. Recalling that the 2-norm is in a sense trying to

minimize each individual transfer function over all frequency, it is seen that

the transfer function weighted by W1(s) in T,(3,3) is S(s)G(s)Kf(s)-l. It is the

closed-loop transfer function from r(s) to yg(s), S(s)G(s)Kx(s), that is the

design target. Thus, the transfer function to focus on minimizing is

S(s)G(s)Kf(s)-l. This is exactly what is desired, i.e. magnitude of

S(s)G(s)Kf(s) = 1 at low frequencies. Making W,(s) very large where tracking

is desired should give this, but remember the two other transfer function

constraints from W,(s) (the (3,1) and (3,2) elements of Tm).

4.3.2 1H2jLOG Tracking Results

The controller investigation begins by choosing the W,(s) transfer

function. As a baseline, consider a low-pass filter with a dc gain of 50 dB,

and a single pole located at s = -0.1 . This is the second row of Table 4-3,

whereas the other cases in Table 4-3 are slight variations to this transfer

function weight. The first and third rows represent a 10 dB shift of the

original 50 dB dc gain, and the last two rows show the constant 50 dB dc gain

with the pole moved left and right by a factor of ten. The two boldface rows

are stabilizing controllers for the higher order transfer function model.

Notice, as in the sensitivity design, these stabilizing controllers yield larger

complex phase margins compared to the remaining cases. These two also
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show some of the largest complex gain margins in the table. The trend as the

dc gain of W,(s) is raised, with a fixed W,(s) pole, shows increasing complex

phase and lower gain margins. The upper complex gain margins, as well as

the complex margins for the W,(s) pole being shifted with a constant dc gain,

do not reveal any patterns.

Table 4-3. H2/LQG Tracking Results (W,=l,W,=20), LO

Wt(s) Bode Bode Complex Complex
dc W,(s) II 211 Gain Phase Gain Phase
gain pole Weighted Margin Margin Margin Margin
(dB) (dB) (deg) (dB) (deg)

40 0.1 6.2 -8.0, 15 ±32 -6.3, 6.0 +30

50 0.1 15.8 -11.2, 10 ±36 -8.1, 7.1 ±35

60 0.1 39.6 -15.1, 6.2 ±44 -9.7, 5.7 ±39

50 0.01 2.7 -5.3, 16 ±27 -4.5, 5.4 +27

50 1 95.9 -26, 4.1 ±31 -5.9, 3.8 ±29

The analysis will now focus on magnitude and time response plots. Only

the runs with the constant pole are shown in plots, but the other two are

briefly explained at the end of the section. The three cases shown in the plots

will have a solid line for the 40 dB dc gain of W,(s), a dashed line for the

50 dB dc gain case, and a dogted line for the 60 dB dc gain case.
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The magnitude of the feedforward compensator, which is critical to

tracking performance, is plotted in Figure 4-21. This plot gives rise to some

interesting facts about the closed-loop transfer function from r(s) to y1(s). It

is evident that as the dc gain of Wt(s) rises, the low frequency gain of K,(s)

falls; this low frequency gain also shifts to the right. The insight here is that

the higher gain choice of 60 dB will likely give better tracking for higher

frequency inputs because of this gain shift to the right. Of course, the

closed-loop tracking transfer function also depends on S(s) and G(s) directly.

Notice that the high frequency magnitude, which increases as the dc gain of

W,(s) rises, will pass through increasing amounts of high frequency noises that

enter with the input command.

-40dB
0, ~----- 50d[B

% 20......... .... . .

S-a0 •\,,,....,,"...

-30-

-70

10-$ L0-a 10-1 too 101 10o 103

Frequency (rad/sec)

Figure 4-21. Feedforward Compensator Magnitude
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The feedback compensator magnitude, shown in Figure 4-22, basically

follows the same trend as the feedforward one (again they both share the same

poles). More importantly, this magnitude plot resembles those in the

sensitivity section, and this compensator determines loop performance such as

stability and regulation. The increased magnitude at high frequencies shows

that amplification of high frequency noises will take place to a larger extent as

the gain of W,(s) rises. The notching out of the complex plant zero is slightly

more evident in the feedback compensator cases, especially with the dc gain

case of 60 dB.

The loop shape is shown in Figure 4-23. The tradeoffs are apparent in

the gains at high and low frequencies, and in the crossover frequency. High

10

-40dB

0o - - 50 dB

--------------- 60 dB0 --1 -- ..-- .-------.. ............................... " -. i ,, ......... .
-LO• -:',,• ... ~. ....................

, -20,

-30

-40-

JO-3 10-a 10-1 10 10 102 103

Frequency (rad/see)

Figure 4-22. Feedback Compensator Magnitude
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Figure 4-23. Magnitude of G(s)I•(s), LO

gain at low frequency is desired from a classical sense, but with a 2 DOF

controller this is not necessarily the same. In the I DOF design the loop

shape magnitude at low frequencies needs to be very high so that S(s) will be

low there, and in turn having a small magnitude of S(s) at low frequencies

gives a T(s) magnitude near unity (or 0 dB). This T(s) magnitude near one at

low frequencies gives the I DOF tracking performance. In the 2 DOF design

S(s) still affects the disturbances the same way, but now the tracking

dependence on T(s) is changed. The 40 dB case has the highest magnitude at

low frequencies and the lowest magnitude at high frequencies, but does not

cancel the plant's complex zero pair as well.

Figure 4-24 is the magnitude of the sensitivity transfer function for the
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Figure 4-24. Sensitivity Magnitude, LO

lower order model. The overall shape is similar to the results from the

sensitivity section, and seeing that S(s) also depends on W1(s) in T,, explains

part of this. A difference in the S(s) plot here versus the previous section is

in the trend reversal at low frequencies. This trend reversal could be a result

of the numerous other elements in T.., or possibly the "waterbed effect" or

area rule that are explained in Chapter 111. There could be advantages to each

case for disturbance rejection, depending on the disturbance frequency. The

change in the upper complex gain margin of Table 4-3, that did not show a

pattern, is explained by the maximum magnitude of S(s) being lowest in the

50 dB dc gain case. By choosing a dc gain between 50 and 60 dB, the two

sensitivity peaks could be equalized in magnitude to give the best upper
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complex gain margin.

The complimentary sensitivity magnitude in Figure 4-25 explains the rise

in the lower complex gain margin as the dc gain of W,(s) increases. As for

fine tuning the peaks of S(s) for a better upper complex gain margin, it is

evident that this would decrease the lower complex gain margin, which is

largest for the 60 dB dc gain. A drawback to increasing the lower margin by

raising the dc gain of W,(s) is the much larger noise feedthrough for the

sensor, which is also a decrease in the allowable multiplicative uncertainty at

high frequencies, but the highest dc gain cases do stabilize the higher order

model.

The closed-loop transfer function magnitude used for tracking is shown in

-10

l0

-20-

~B-30-

X -40-

5- 40 dB

---- 50 dB
- d0 6 0 d B

-70
10-3 10-2 10-1 100 lt log 0 i03

Frequency (rad/sec)

Figure 4-25. Complimentary Sensitivity Magnitude, LO
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Figure 4-26. This is the transfer function given in y,(s)/r(s)=S(s)G(s)K,{s).

Clearly, the fastest responding tracker is the case of the highest dc gain in

W,(s). This magnitude curve breaks away from one (or 0 dB) around

10 rad/sec, whereas the lower dc gains in Wt(s) cause earlier departures of

this magnitude from the 0 dB line. The earlier departure can be crucial to

tracking, depending on the frequency of the input and the rise time needed.

As an aside, this plot also shows that any high frequency noise that enters

with the input signal is amplified at increasing levels as the dc gain of W,(s) is

increased. Comparing Figure 4-26 to the previous plot of T(s), a definite

difference is noticed. It is the peak of T(s) that disrupts good tracking

performance in the sensitivity section, and the large tracking overshoot comes

10

-to0 V•" '

-10--20-

40 •

-so- 50 dB

-70 ..-.... 60 dB

10-$ 10-a 10-1 100 101 Los 103
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Figure 4-26. Closed-Loop Transfer Function Magnitude, LO
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from the peak of T(s) being above the 0 dB line. By using the 2 DOF

controller design this overshoot problem is circumvented by the feedforward

compensator, which is mainly dependent on the tracking error weight W,(s).

In order to look at the noise effects on control usage, the magnitude of

Kb(s)S(s) is given in Figure 4-27. This uncovers a tradeoff that introduces a

problem into the seemingly good design. It is evident that high frequency

noise will corrupt the control usage at increasing levels of W,(s) dc gain. The

jump in magnitude around 20 rad/sec is almost exactly 8 dB for each 10 dB

shift up in the dc gain of Wt(s). Thus, even though the previous figure shows

the bandwidth increasing as the dc gain rises, the burden of increased noise

corrupting the plant input is the tradeoff. Another drawback to the higher dc

0

-5 - 40dB - .
- -50dB

-10t
60 dB

-15\

*-20-
II

-30 ,

-45
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Figure 4-27. Magnitude of Kb(s)S(s), LO
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gain case is the lower allowable plant additive uncertainty in the high

frequency range.

The time responses begin as before with the regulation of the initial

angle-of-attack perturbation. The a response due to an ot(O) of 5 degrees is

shown in Figure 4-28 and demonstrates trends similar to the previous section.

Initial overshoot and oscillations of the a response increase as the dc gain of

W,(s) rises. Although the a response shapes are different from each other, the

time to regulate the perturbation is relatively constant at 1.5 seconds. Larger

amounts of low frequency noise are evident in the case with the lower dc gain.

Remember the concentration here is for a good tracker, even though the

regulation responses appear to be acceptable in a practical sense.

6
-40 dB

4 -- 50 dB

2-

.• 0 ..... ::= "--....."---:

-4
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Figure 4-28. ce from a(0) = 5 deg, LO
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The effect of noise on the control usage is somewhat visible in

Figure 4-29. As mentioned in the discussion of the magnitude plot for

Kb(s)S(s), the noise (mainly high frequency) that affects the control usage

increases as the dc gain of W,(s) rises. With the scale of Figure 4-29 it is

hard to see the noise effects, but the separate plots of each case confirmed the

noise corruption was the largest in the 60 dB gain case. The other problem

with this 60 dB gain case is that the elevator deflection reaches 38 degrees,

which is beyond practical limits of the F-16. Using 50 dB as the low

frequency gain of W,(s) gives a maximum elevator deflection of around

21 degrees. Recall that elevator deflection is the output of the servo, not the

input to the servo (which is this plot). The regulation time coincides with the

80

-- 40dB

60- 50dB

60dB
40w

S 20-31

-20

-40
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Figure 4-29. Control Usage (u) from a(0) = 5 deg, LO
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previous av time response figure for this perturbation in being around 1.3 to

1.5 seconds.

The tracking response for a step input is Figure 4-30. Note that the

overshoot is much less than in the sensitivity design, but with rise times being

slightly longer. The trend in rise times getting lower as the dc gain of W,(s)

increases is foreshadowed by the closed-loop transfer function magnitude plot

of Figure 4-26. The return towards small steady state error is very fast for all

three cases, although the large amount of simulation noise makes this hard to

decipher. Low frequency noise corrupts the 40 dB dc gain simulation the

most, with the 60 dB dc gain case showing a combination of high and low

frequency corruption.

1.2
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N

0.4
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Figure 4-30. N, from N, Command Step, LO
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Concern for the low bandwidth causing slow rise times led to the

examination of the decade shift in the pole of W,(s), with the dc gain fixed at

50 dB. The 2-norm value and margins are also shown in Table 4-3 for these

two extra cases (magnitude plots and time responses are not shown). When

the pole is moved up one decade, s = -1, the rise time decreases because the

bandwidth goes up. As a matter of fact the rise time decreased a large

amount; about half of what it is for the s = -0.1 case. The tradeoff is in

lower complex margins, because the peaks of S(s) and T(s) both rose, and in

more noise corruption to the plant output and control usage. All frequency

plots tend to shift their peaks to the right, i.e. the plot of Kb(s)S(s) not only

grew in magnitude but it moved to higher frequency, indicating higher

frequency noise corruption for the control usage. Most response histories

were very oscillatory in this case, as expected from the very fast rise time.

When this same pole in W,(s) is moved to a lower frequency by one

decade, s = -0.01, the exact opposite of the previous s = -1 case occurs.

The N. response is slower and low frequency noise corrupts it more. The

reason for the lower frequency noise corruption is that S(s) and T(s) have

their peaks increased and moved left when compared to the baseline case. The

magnitude peak of Kb(s)S(s) moves to a lower frequency and its overall

magnitude decreases. Hence, moving the pole of Wt(s) (with fixed dc gain)

gives information that this weight change could also be used to alter design

parameters.
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The evaluation results can be concluded as:

i). Two stabilizing trackers are found, and both exhibit good N, command

following properties. The 60 dB dc gain case has large deflections for the a

initial condition, but this 5 degree perturbation is very large to begin with.

ii). The 50 dB dc gain case has good regulation features, much better

than the stable H 2/Sensitivity baseline case.

iii). Limited shaping of the sensitivity transfer func-ton is possible with

the weight on tracking.

iv). Rise times for the two stable cases are a little slower than the

sensitivity designs, although they seem fast enough from a practical sense.

v). The allowable additive and multiplicative uncertainties decrease at

high frequencies as the dc gain of We(s) rises.

vi). The high frequency compensator magnitude increases as the dc gain

of W,(s) does, and cancels the plant's complex zero pair better.

vii). The loop shape at low frequencies decreases as the dc gain of Wt(s)

increases, but the loop shape above approximately 0. 1 rad/sec increases as the

dc gain of Wt(s) increases.

viii). Raising the dc gain of Wt(s) gave lower rise times for tracking the

N, step and gave more of an oscillatory response for regulating the initial a

perturbation. Control usage increased greatly as the dc gain of Wt(s) was

raised.

As a summary of the H2 design chapter, continued progress is seen by first
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weighting sensitivity, and then using a 2 DOF controller with a tracking

weight. In the basic LQG design, good ot regulators are achievable, but the

higher order model is unstable. Furthermore, good tracking is not found, and

the sensitivity transfer function is not shaped to reject low frequency

disturbances. By adding the sensitivity weighting in Section 4.2, a preferred

sensitivity magnitude is found that helps reject low frequency disturbances and

indirectly causes a very small steady state tracking error. Most importantly,

the goal of the sensitivity section is accomplished by designing a controller

that stabilizes the higher order system. The stabilizing controller from the

sensitivity design is a good tracker, but a poor regulator. With the focus on a

2 DOF controller in this section, two stabilizing cases are seen that both give

good tracking. One of these is also a good regulator for the a perturbation,

the baseline case. This baseline 2 DOE tracking case appears to be the best

design when considering the regulation of the a perturbation, tracking a 1 G

step, and stabilizing the higher order model. Now the design methodology

will change to the H.. type, with again stabilizing compensators that give good

performance being the goal of the weight selection/location process.
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V. H,. Desig

5.1 H./Robust Tracker

The purpose of this chapter is to show an H.. design for a robust tracker.

Previously, H2 regulators and trackers have demonstrated very good

performance traits, but had tendencies to destabilize the higher order model

because of the additional phugoid mode. This is no surprise since the H 2

methodology does not directly address robustness to plant variations, as the

H. process does. The co-norm is much more powerful in this uncertainty

environment because of its submultiplicative property. The Small Gain

Theorem (SGT) can be combined with this submultiplicative property to yield

a robustness level that depends on I T, [ [Zam66]. The level of robustness

is JA 11 .; if 1 Td 11 . is less than I/ [A 1j 1, the robustness test is passed.

Although this does look very straightforward and preferable as a test for

allowable uncertainty, the results of failing this test actually give no

information on stability of the closed-loop system for the given l A 11 .. Not

only is this robustness test conservative from the submultiplicative property

and the SGT, but it also depends on oo-norms that are the maximum

magnitude of a transfer function over all frequency. The exact frequency that

may be of interest (possibly phugoid frequency) could actually have large

allowable uncertainties, yet the robustness test may fail because of a peak at a
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completely meaningless frequency. Weighting functions may be introduced

into the design to help alleviate this problem. Even though this test appears to

be a major advantage, in many cases it yields no useful information, as will be

seen in this section. If this test is failed, there actually is some A(s), not

necessarily linear or time-invariant, that will destabilize the closed-loop

system Td. When the robustness test does fail, closing the loop and checking

the poles is the recourse. The compensator is still optimized for this A(s)

since the oo-norm of Td, is always being minimized with the H. optimal

design, and whether the robustness test for a certain A(s) fails or not, it is

still true that

T (5.1)

for guaranteed closed-loop stability. Therefore, minimizing II Td f is still

maximizing the allowable 1I All,.. This Td is the unweighted closed-loop

transfer function from d to e. Another common method is to make chosen

weights overbound the magnitude of an expected A(s), then if II TdA II < 1

(or in other words II TW 1 .< 1) the robustness test is passed.

The peak magnitude of Kb(s)S(s) gives the inverse of the allowable

additive plant uncertainty as an cc-norm value. This additive uncertainty plot

of K6(s)S(s) also gives the frequencies where the magnitude of the allowable

uncertainty can be, and does not depend on only one maximum value over all

frequency. Multiplicative uncertainty is a function of T(s), whereas the
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complex margins are based on 11 T 11 . and 11 S 11 .. Thus, the oo-norm

computations give the worst case gain margins, phase margins, and allowable

uncertainties over all frequencies, but not necessarily the frequency that may

be of interest.

The H. controllers designed in this section are all optimal H. designs with

Q(s) = 0 (i.e. central) in the [DGKF89] formulation. H-. suboptimal

compensators are discussed in Section 5.2, although these will still be the

central controller design. The optimal H.. designs are compared here because

they represent minimizing 11 T,, 11 .. One problem that arises from using the

optimal controller is in noise corruption. This is from the fact that noise

energy is not being minimized as in H 2, and the H_. optimal compensator

normally has a "D" term that allows more high frequency noise to pass

through. Hence, time responses for the H.. optimal designs are shown without

noise simulation since noise rejection is not the point of this section. Noise is

included in the section on suboptimal controllers to show the advantage of

backing off of the optimal y value, %. The criteria for finding Y. in these

cases is when the controller drops to the order of the design plant minus one,

where the "D" term appears.

A reason for showing the central H.. controller is due to the problem of

picking a Q(s) to use in the (J,Q)-type compensator parameterization for a

noncentral controller, as seen in Chapter II. There really does not seem to be

a well defined approach, other than mixed H2/H. optimization, to give a value
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of Q(s) that would give results better than choosing Q(s) = 0.

The H. design diagram is shown as Figure 5-1. Notice that the exogenous

inputs are now denoted as d (w in H2 design), and the controlled outputs as e

(z in H2). This notation change is to prevent confusion between the two

different design methodologies. The exogenous inputs are now assumed to be

+t

Figure 5-1. H. Robust Tracker Design Diagram

bounded energy, not unit intensity white noise. The input d2 is at the plant

output partly so that a A(s) uncertainty can be input as additive to the design

plant through the use of the WA(s) and W, weights. As before, W, is taken to

be a scalar and its presence is necessary to satisfy [DGKF89] requirements.

The combination of W, and WA(s) is the additive plant A(s) weight, i.e. the
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magnitude of these should look like the expected A(s) if only additive plant

uncertainty is modelled. The tracking weight W,(s) will again be a low-pass

filter that penalizes the error between the commanded input d, and the

combination of the plant output and the weighted input WA(s)d 2. For this

design the actual shape of WA(s) is also driven by the combined weight of

W,(s) and WA(s), which will be the weight on sensitivity. This is covered in

the upcoming discussion of Td. With these weights in mind, recall that the

H. optimal design will be minimizing 11 T, 11.. As in the H2 cases, the H.

design also needs to be manipulated into the state space form for the design

plant P, given by

I g As 0 0O 0 0 x[i 'B0

= 0 AA 0 XA + 0 BA + [u] (5.2)

BtsC BtC At J x -B, BtDA

D C, DvCv~ .C, +I-D, V D, dl 0 J u
J 0 0 0 [t 

0 0 ]d (5.3)

1 + - 1 0 d,(5.4)
Y. C A 0 1 0 DA 0
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Like the H2 designs, there are several constraints that can be checked
immediately. These are Dd = 0, Dy. - 0, l uD• full rank, and Dyd yd full

rank. Dy. is already equal to zero, and DydIld full rank will be met when
W4 (s) has a "D" term. I•Dc., full rank is satisfied for a nonzero WC, and

Dd = 0 can only result when D, = 0, i.e. W,(s) must roll off. A full

discussion of these limitations is in [Gah92], and briefly discussed in

Chapter II. Again the 2 DOF compensator is given by [Kf Kb] as in

[u]=[Kf Kb][]Y (5.5)

As before, the poles of K,(s) and Kb(S) will be the same. Now that the design

setup is established, the weightings in Figure 5-1 can be examined.

5.1.1 H./Robust Tracking Weight Selection

A key to selecting available weights in this H. design is with the WA(s)

transfer function. From Figure 5-1, it is the combination of WA(s) and W,

that is the direct weight on additive uncertainty for the plant. The weights

WA(s) and W,(s) are constraints on the sensitivity transfer function, and will be

used to try and lower the magnitude of S(s) around the phugoid frequency.

Refer to the models of multiplicative and additive uncertainty, Figures 3-2 and

3-3, for the uncertainties between the lower order and higher order models.

The WA(s) weight is chosen as a low-pass filter since the phugoid (at
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0.07 rad/sec) is destabilizing the higher order model. If this is modelled as an

additive plant uncertainty, W, and WA(s) can be used to improve the allowable

additive uncertainty. Since W, is a scalar, it serves to raise or lower the

magnitude shape of WA(s). In this design W, and WA(s) weight the high

frequency additive uncertainty since the low frequency magnitude of Kb(s)S(s)

will follow the inverse magnitude of the design plant (magnitude of Kb(s)S(s)

tends to start at -37.5 dB), and the low frequency magnitude of the plant is

larger than the dc gain of WWA(s). This inverse magnitude following of the

design plant, at frequencies where the compensator has large magnitudes only,

is the same as discovered in most H2 designs. The commonly referenced

transfer function Kb(s)S(s) is with WA(s) and W, in the (2,2) element of Td,

represented by the transfer function matrix

[Wt(s)(S(s)G(s)K 1(s)-1) Wt(s)S(s)WA(s) (5.6)

WeKts) S(s) WCKb(s) S(s)W,(s))

As in the H2 tracking design, W,(s) is the direct weight on the tracking error

S(s)G(s)Kf(s)-l, in the Td(l,l) transfer function. Hence, this error needs to

be small at low frequencies to ensure that the magnitude of S(s)G(s)K,(s) is

close to one. The other element of importance is T,(I,2), containing the

sensitivity transfer function. This is weighted by the combination of Wt(s) and

WA(s), which makes a large penalty at low frequencies. One purpose of the
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WA(s) weight on S(s) comes from the fact that very large magnitude weights

on the tracking error create time responses in which the elevator deflection

tends to pass the 25 degree limit. Most importantly, the magnitude of S(s)

can be penalized severely at low frequencies (i.e. phugoid frequency), unlike

the H2 designs where low frequency weights are less important because of the

frequency integral used in the 2-norm calculation. Also in the H2 designs the

higher frequency peak of S(s) increased greatly when trying to drive the low

frequency magnitude of S(s) down, a result of the "waterbed effect". The

(2,1) element of Td is not an area of concentration since tracking is being

controlled by the (1,1) term, and Kf(s) appears in this Td(2, 1) transfer

function. Now that the design has been discussed and weight dependencies

analyzed, the focus shifts to design results.

51.2 H./Robust Tracking Results

Low-pass filters for WA(s) and Wi(s) are kept for all cases, as is a scalar

W.. W,(s) is chosen with a dc gain of 20 dB and a pole at 0.1 rad/sec to help

weight the low frequency magnitude of S(s). A zero at 1 rad/sec is added to

WA(S) to give a nonzero DA term in Dyd so that [DGKF89] requirements are

met. The tracking weight starts with a 40 dB dc gain, and a pole at

0.05 rad/sec. Iterations were then performed on W, to yield results

comparable to the time responses of the H 2 tracking section. The resulting W,

value was taken to be W, = 5. This becomes the "baseline" selection that is
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seen as the second row of Table 5-1 (boldface). The same WI(s) is held for

all cases in Table 5-1 since the higher order system is stable for each. First

the pole location in Wt(s) is shifted left and right (i.e. to lower and higher

frequencies) to examine the responses and margins. The first four rows of

Table 5-1 show that the complex gain margins seem to jump with the pole

shift from 0.025 to 0.05 rad/sec, then the lower margin increases while the

upper margin decreases with the pole moving to 0.075 and 0.1 rad/sec.

Table 5-1. H./Robust Tracking Results, LO

Bode Bode Complex Complex
Wp(s) we TWe igh Gain Phase Gain Phase
polea Ws Weighted Margin Margin Margin Margin

(rad/sec) (dB) (deg) (dB) (deg)

0.025 5.0 1.2208 -7.7, 13.2 ±34 -6.1, 7.4 ±33

.0 5.0 1.7753 :9.3. 10.8 ±_H -7.3.L9.0 ±3H

0.075 5.0 2.2221 -10.3, 9.8 ±43 -8.1, 8.8 +37

0. 5. 2,6064 -IL.1. 9.A46 -8.8. 8.0 +37

0.05 2.5 1.3082 -10.9, 9.1 ±46 -8.7, 8.0 +37

05 7.5 2.1307 -8.4. 12.0 +36 -6.6. 8.0 +3

The complex phase also shows an increase up to ±38 degrees for the baseline

case, then it stays approximately the same for the pole at 0.075 and

0.1 rad/sec. Changing the value of W, is then checked for the baseline case.
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The reason for choosing this baseline case is that the W,(s) pole location of

0.025 rad/sec causes a slow time response for a step input, and the cases of

pole locations at 0.075 and 0.1 rad/sec both have elevator deflections (due to

the initial a of 5 degrees) above the 25 degree limit for the F-16. The bottom

two rows of Table 5-1 are for W, values of 2.5 and 7.5, respectively.

Margins for the W, = 2.5 case match closely with the row above it that

represents the fastest W,(s) pole, whereas the W, = 7.5 case is closer to the

slowest W,(s) pole of 0.025 rad/sec. The W, = 2.5 case also has an elevator

deflection that exceeds 25 degrees for an initial a of 5 degrees.

The three cases chosen for magnitude and time response plots are the

underlined ones in Table 5-1. The W,(s) pole at 0.05 rad/sec with the Wc

value of 5, which is the baseline, appears in the magnitude and time response

plots as the solid line. The We(s) case with the fastest pole, at 0.1 rad/sec, is

the dashed line. A dotted line represents the case of W, = 7.5 with the W,(s)

pole at 0.05 rad/sec.

Figure 5-2 is the singular value plot for Td. The pair of lines for each

case are the two singular values, since Td is a 2 x 2 transfer function matrix.

The maximum singular value of Td is flat for H.. optimal designs, i.e. it

appears to be an all-pass filter as described in Chapter II. Hence, the value of

,y. is equal to I Tdj .. for these optimal cases (as seen on the vertical

magnitude axis of the Figure 5-2), and is shown to be the same as that given

in Table 5-1.
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Figure 5-2. Singular Values of Td, LO

The next two plots, Figures 5-3 and 5-4, represent the feedforward and

feedback compensators, respectively. As in the H 2 tracking section that is

also 2 DOF, the magnitudes here are very similar in shape. At low

frequencies where tracking is weighted, these should be the same because the

low frequency magnitude of T(s) is fine for tracking. The problem with using

T(s) as the closed-loop transfer function is in the peak above 0 dB and the

possible early roll off. It will be seen that the compensator magnitudes differ

at frequencies where T(s) and the closed-loop transfer function are not the

same magnitude, i.e. the magnitude of T(s) rises above the 0 dB line. Other

than this change in compensator magnitude because of T(s), the feedback
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Figure 5-4. Feedback Compensator Magnitude
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compensator in Figure 5-4 shows the large spike in notching out the plant

complex zero for the Wt(s) pole at 0.1 rad/sec. Both compensators show the

baseline with the highest gain at low frequencies, and Wt(s) with the pole at

0.1 rad/sec will pass the most high frequency noise through. Note that

because of the "D" term in the state space of K(s), the compensator

magnitudes do not roll off.

Figure 5-5 is the magnitude of the open-loop transfer function. All three

cases exhibit very high gain at low frequency. Moving the pole of W,(s) right

shifts the loop shape right (to a higher frequency), but lowers the low

frequency gain slightly. Raising W, appears to shift the whole magnitude

curve down.

60

-baseline

40--- Wt(s) pole 0.1 r/s

- W= 7.5

V 20o

w 0-

-20-

-40
10"2 10-2 1l-1 too tO 109 103

Frequency (rad/sec)

Figure 5-5. Magnitude of G(s)Kl(s), LO
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The magnitude of the sensitivity transfer function is Figure 5-6. As

expected from the loop shape plot, the low frequency gain of S(s) is very low.

The small magnitudes at low frequencies are from the combination of the

W,(s) and WA(s) weights, and the use of the oc-norm on Td. The typical

double peak of S(s) is seen here, with the baseline case being the most

favorable for the complex margins (at least the part of the complex margins

that depend on the sensitivity magnitude). Notice that the "waterbed effect"

and area rule are the likely reason for the low frequency magnitude of the

W,(s) pole at 0. 1 rad/sec case rising.

Figure 5-7 is the magnitude plot for the complimentary sensitivity. The

high frequency trend is expected here since it closely resembles the high

10

-10

* 20-

-30-II

-40o baseline

/---- Wt(s) pole 0.1 r/s

-50

-5o ... .. f• •-Wc :7.5

io-3 10-2 10-1 10O 101 1o0 103

Frequency (rad/sec)

Figure 5-6. Sensitivity Magnitude, LO
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Figure 5-7. Complimentary Sensitivity Magnitude, LO

frequency magnitude of the loop shape, Figure 5-5. A tradeoff is apparent in

that the case with the best margin (peak of dashed curve is the lowest) will

attenuate the least amount of measurement noise, if the noise were included in

simulations. The highest peak of T(s) is in the W,, = 7.5 case, and this would

have the least high frequency noise feedthrough from the sensor.

The closed-loop transfer function magnitude in Figure 5-8 clearly shows

that the dashed curve (W,(s) pole at 0.1 rad/sec) will be the fastest in time

responses, and the dotted line (W, = 7.5) will have the longest rise times.

Also note that the low frequency gain of the closed-loop transfer function is

slightly below 0 dB. This has been shown before and comes from the tracking
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Figure 5-8. Closed-Loop Transfer Function Magnitude, LO

weight not having large enough gain at low frequency. The problem with

correcting this in the design is that in theory an infinite dc gain of W,(s)

would need to be employed to penalize this low frequency error enough to get

the magnitude of S(s)G(s)Kf(s) to be 0 dB (or magnitude 1), at low frequency.

An easy solution would be to increase the dc gain of Kr(s) after the design

process. The case with the W,(s) pole at 0.1 rad/sec will pass the largest

amount of command signal noise to the plant output. As mentioned in the

compensator magnitude plots, the differences in Kf(s) and Kb(s) should be

where the magnitude of T(s) starts to rise above 0 dB, and the closed-loop

transfer function magnitude cannot follow this rise. Thus, the 2 DOF design
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again gets away from using an unfavorable T(s) as the closed-loop tracking

transfer function. The peak magnitude of T(s) could actually double an input

if it were in the frequency range of 3 to 5 rad/sec.

The magnitude of Kb(S)S(s) is shown in Figure 5-9. This is the transfer

function that is weighted in T,(2,2), and represents the allowable plant

additive uncertainty (inverted that is). The combined WCWA(s) weight on

Kb(s)S(s) weights the high frequency gain since the low frequency magnitude

is following the inverse of the design plant. The case with the We(s) pole at

0.1 rad/sec represents the least allowable additive uncertainty at high

frequencies, and the W, = 7.5 case yields the most. Also note that the noise

corruption for control usage is worse in the case with the least allowable

- baseline/ ......... ....
-10

Wt(s) pole 0.1 r/s ...........................

-15 Wc =7.5

_ 20

-25-

-30"

-35

-401_
10- 10-8 10-1 100 101 102 103

Frequency (rad/zec)

Figure 5-9. Magnitude of Kb(s)S(s), LO
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additive uncertainty. The concentration of this plot in the H2 chapter was in

the fact that it is also showing the feedthrough of the disturbance and

measurement noise to control usage. It is seen that all three cases fail the

robustness test when the difference in the lower order and higher order models

is lumped into only additive uncertainty, because the peak of the additive A(s)

magnitude is near 50 dB at 0.07 rad/sec (well above the 37.5 dB allowable at

that frequency). Refer back to Figure 3-3 for the plot of additive plant

uncertainty between the lower and higher order models. Failing this

robustness test does not imply that the higher order closed-loop system is

unstable since this robustness test is conservative, and the higher order system

in all runs is in fact stable. Another note is that the phugoid comes into play

at 0.07 rad/sec where all magnitudes fall on top of each other (because of the

high compensator gains at low frequencies), and the high frequency area

where the allowable additive A(s) is changing is not very critical in this

design for stabilizing the higher order model. The stress is placed on this

particular design because in many other cases the uncertainty could easily be

at high frequencies, and this is commonly the way it is modelled.

Figure 5-10 is the step response for an Nz command that shows the

overshoot and steady state error. The overshoot is typical in that the fastest

response has the largest amount. The steady state error goes back to the

closed-loop transfer function magnitude not being exactly 0 dB at low

frequencies, which would be the only advantage of using T(s) as the
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Figure 5-10. N, for N, Command Step, LO

closed-loop transfer function; that is without a post-design nodification to

Kf(s). A steady state error is not obvious in the H2 responses since the large

amount of simulation noise tends to cover it up. The baseline case reaches

1 G in 0.5 seconds, and as expected the W, = 7.5 case is the slowest of the

three.

Regulation of the initial a(0) = 5 degrees appears to be very good for all

three cases in Figure 5-11. The solid line (W1(s) pole at 0.05 rad/sec,

W. = 5.0) is somewhat of a compromise of the other two responses, and all

three regulate the initial a back to zero in about 1.5 seconds. The responses

of these three cases are similar to the baseline case from the previous H 2
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Figure 5-11. a from a(O) = 5 deg, LO

tracking design. In a comparison, the H. responses appear to be slightly

better than the H2 ones, but the H. cases do not have simulated noises.

Elevator deflection for the initial ct(O) = 5 degrees is Figure 5-12. The

most important feature is that the fastest case (Wt(s) pole at 0.1 rad/sec)

breaks the 25 degree elevator limit. This is for a 5 degree C1 though, which is

fairly large. The response here parallels the other plots in that the faster

regulator uses larger deflections, and similarly the slower regulator uses the

least elevator deflection. Elevator deflection, not control usage, is plotted

since the point is not to show noise effects in this design.
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The overall results of this section can be summarized as:

i). All cases (out of about forty) stabilize the higher order model with the

dc gain of W,(s) as 20 dB.

ii). All three cases in the response plots appear to be very good trackers

and regulators, but the critical key is that this is without the noise corruption.

The plot of Kb(s)S(s) shows that the noise will severely corrupt control usage,

and more in the fastest response case. The magnitude of T(s) also shows

unfavorable characteristics for noise attenuation.

iii). The sensitivity transfer function magnitudes are extremely low at low

frequencies, especially at the phugoid frequency.
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iv). The robustness test on the additive uncertainty Kb(S)S(s) does not

give any useful information since it is not passed, and the oo-norm test on

1 TdA(s) 1 being less than one is not applicable since A(s) does not overbound

the expected uncertainty. Thus, the recourse is to close the loop and check

the higher order model's poles.

v). For increasing the break frequency of the W,(s) pole, the complex

phase and upper gain margins went to a peak for the pole located at

0.05 rad/sec, whereas the lower complex gain margin continually increased.

With changing the value of W, for a fixed W,(s) pole location, the complex

phase and lower gain margin decreased as W,, was raised.

vi). Raising W, lowered the compensator magnitudes at high frequency

and appeared to let the compensator cancel the zero pair in the plant to a

lesser extent. Going to the higher frequency pole in W,(s) increased the high

frequency compensator magnitude and cancelled the complex zero pair better.

vii). Varying W, shifted the whole loop shape curve up and down.

Raising W, lowered the magnitude of the curve at all frequencies.

viii). Increasing the frequency of the W,(s) pole gives more high

frequency noise passage to the plant output (from I T(JcI) and raising W,

gives less. At high frequency, the faster We(s) pole design yields less

allowable multiplicative uncertainty and the increased control weighting case

gives the most.

ix). For the magnitude of Kb(s)S(s), moving the W,(s) pole to higher
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frequericy gives less allowable plant additive uncertainty at high frequency.

The allowable plant additive uncertainty is increased at high frequencies for

raising WC.

x). Using the faster pole in Wt(s) gives lower rise times and slightly more

overshoot in the NZ step response. The higher value of Wc gives longer rise

times and less overshoot of 1 G.

xi). The elevator deflection increased as the W,(s) pole was moved to a

higher frequency, and for the pole located at 0. 1 rad/sec the deflection went

past the 25 degree limit for the F-16. An increase in Wc gave less elevator

deflection.

xii). The baseline H. responses appear similar to the baseline case from

the H2 tracking design, although the compensator magnitudes and loop shape

are noticeably different.

This section has shown an H.. optimal design set up as a robust tracker.

The resulting cases are all stabilizing for the higher order model, but the

optimal H. compensators have a "D" term in their state space. With concern

over noise corruption since the compensators do not roll off, the next section

is devoted to a suboptimal H. compensator design using the baseline case from

this section.
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5.2-Ha. Sub-Optimal Examination (Central)

The intent of this section is to augment the previous H. comparison by

examining an H. suboptimal (central) controller. Reasons for using a

suboptimal controller are typically grouped into two categories: numerical

difficulties in computing the exact optimal 'y, and undesirable characteristics

of the H. optimal compensator. The details of these problems for optimal H.

compensators will now be examined.

Computing the value of -y away from -y. (with the central controller) is

seldom difficult. Problems normally arise as -y. is approached, and the

specific difficulty depends on which of the suboptimal conditions below fails

at optimal.

i) H1 E dom(Ric) with X0. - Ric(H1 ) _ 0

ii) Hy E dom(Ric) with Y. Ric(Hy) > 0

iii) p(Y.X.) < -2 (spectral radius condition)

These suboptimal requirements are explained in Chapter II and in [Li92]. The

value of %'o is the minimum y such that one of the above conditions fails.

Usually the spectral radius condition, the third one, is equal to -y,2 when

ly = 'vo. The immediate problem created by this is in the second part of the

equation for K,, as it appears in Chapter II and repeated here:
Ke = (B0 X0, + ITJ.Q) (I - '2Y..X.)"'.
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As an aside, recall that this comparison is for the central controller only, so

the other problem created by the spectral radius constraint in the K,, equation

is insignificant. The point is that with p[Y..(7)X.(V.)J = y,, the second part

of K. is now non-invertible. The "descriptor" method is used to circumvent

this problem, and leads to a compensator of order one less than the plant

[GLDKS91]. In this case, the optimal compensator typically has a nonzero

"D" term in its state space description that gives K(s) nonzero gain at high

frequency, and the resulting a(Tf) looks like an all-pass filter with dc gain

equal to -y.. Not to ignore the first two conditions; these are not very

common in determining y but can lead to optimal compensators the same

order as the plant. This can happen if X, and Y, are not positive

semidefinite, but the spectral radius condition is satisfied. In all H,. cases that

were run, none fell into this situation; i.e. all compensators dropped at 'Y to a

rank one below the plant.

The undesirable characteristics of the true optimal compensator can be

somewhat alleviated if y is backed slightly away from -y therefore zeroing out

the compensator's *D" term. The importance of this "D" term will be shown

in magnitude and time response plots, and is linked to two important factors

that are evident even before examining any plots. The first is the fact that a

nonzero "D" term in the state space of K(s) is a direct feedthrough for any

high frequency noise that could be attenuated with a strictly proper

compensator, and the second comes from the difficulty in implementing a
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controller with such large power requirements at high frequencies. Both of

these problems can be relieved by backing off of -y. and causing the H.

suboptimal compensator to start approaching the H 2 optimal one (for Q(s) = 0

only) [Rid91].

Now that some of the structure has been reviewed, a look at the

robustness test and properties for H. optimal versus suboptimal controllers is

made. In the previous H. design, a combination of the submultiplicative

property for the co-norm and the SGT are shown to exploit the maximum

robustness for the H. optimal controller. What of this is lost as 'y is backed

away from -y, though? The SGT holds no matter what norm is involved in

finding a compensator since it involves only the co-norm of Td as A(s) is

wrapped around it. This is independent of how the compensator, that is inside

of Td, is found. Yet the SGT still uses the oo-norm of T,4(s)A(s) to prove

stability of the closed-loop system to an allowable 11 A 11 .. The

submultiplicative property also holds in the suboptimal case, but with a word

of caution. In the H. optimal designs, the value of -y is also 11 Ta l . In the

suboptimal case this is not necessarily true, but usually holds for values of -Y

near o. In actuality, fI T.,11- could be much less than y. Even with this,

f Td fl can still be found and the SGT used.

The specific comparison used for magnitude and time response plots (for

the lower order model) is the baseline case from the previous H. optimal

section with y. = 1.7753, and a 10% suboptimal case with -f = 1.9528. The
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use of the optimal K(s) is denoted by the solid lines in Figures 5-13 through

5-19, whereas the dashed line represents the 10% suboptimal case. The

increase of -y by 10% is an exaggeration to allow easier explanation of the

effects of raising -y in the plots. An increase in the 1 - 5% range seems more

practical, but depends on the example and design specifications.

The values for -y and the margins in four cases are presented in Table 5-2.

The boldface rows are the two cases that are shown in magnitude and time

response plots. These cases are the baseline design of the previous section,

where WC = 5, Wi(s) has a dc gain of 20 dB with its zero at 1 rad/sec and

pole at 0.1 rad/sec, and Wt(s) has dc gain of 40 dB and its pole at

0.05 rad/sec. The important point that Table 5-2 makes is that in every case

of raising -y, the margins (both Bode and complex) decrease. Other than this

Table 5-2. H. Suboptimal Examination Results, LO

Bode Bode Complex Complex
Phase Phase

Dy Gain Margin Mari Gain Margin Mari
(dB) Margin ()Margin(deg) (dB) (deg)

1.7753 (opt) -9.3, 10.8 +39 -7.3, 9.0 ±38

1.8108 (2%) -9.1, 10.3 ±38 -7.2, 8.6 ±37

1.9528 (10%) -4.7, 10.0 ±35 -6.7, 7.5 ±34

100.0 -6.7, 8.6 ±24 -4.6, 4.2 ±24
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observation is the amount that they decrease, which is not very much for the

lower percentages of increased -y. In going to the 2% suboptimal case, the

margins are just below the optimal ones.

Turning to magnitude and time response plots, Figure 5-13 is the singular

value plot of Td. This pictorially explains the "all-pass" feature of o(Td) at

optimal, where a(Tf) = -° = 1 Td 1 .. The 10% suboptimal case has

1i Td 1- = 1.9529, which is the value of y for this suboptimal case. Again

this does not have to be true. It is also seen in this figure that 1 T, I. is not

being minimized in the suboptimal case, so the allowable robustness (value of

Hl& 11 .) is not being maximized. Clearly the suboptimal case will have a finite

2-norm value for Tad, whereas for the optimal case II T, 112 = oo. The

2

1.5\

optimal

- 10% sub
I'

0.5-

10-' 10-a 10-1 100 10' lox 108

Frequency (Md/sec)

Figure 5-13. Singular Values of Td, LO
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H.. suboptimal solution shows a noticeable trend in approaching an H2 optimal

solution with the decreasing magnitude at high frequency, where the integral

calculation for the 2-norm is dominant.

The "D" term for the H. optimal controller is the key to Figure 5-14. As

mentioned previously, in all the H. optimal cases examined the compensator

drops rank to one below that of the plant and picks up the nonzero "D" term.

The dashed line of the suboptimal compensator magnitude demonstrates the

change to a full order compensator, with no direct energy feedthrough because

of the roll off. The suboptimal case will attenuate more high frequency noise

than the optimal case, with little difference in the low frequency magnitude.

20 ------------

10 - optimal
- 10% sub

0

- 20

-30

-40\

10r-3 1084 10-1 too 10' 102 102

Frequency (rad/see)

Figure 5-14. Feedback Compensator Magnitude
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The loop shape is Figure 5-15 and again demonstrates a more favorable

roll off for the suboptimal case. The suboptimal case has nearly the same

high gain at low frequencies as the optimal case, and is very close to the

magnitude of the optimal case at the frequency where the plant's complex zero

is being countered.

The overall shape of the sensitivity magnitudes appear to be very close in

Figure 5-16. The suboptimal case does show that the complex margins (that

depend on the sensitivity transfer function magnitude) will be slightly

decreased because of its higher magnitude peak, which correlates with the

results of Table 5-2. Attenuation of low frequency noise will be basically the

same for both cases.

- optimal

40- 10% sub

40

10-a 10-' 10-1 10t LO 102 L03

Frequency (rad/sec)

Figure 5-15. Magnitude of G(s)Kb(s), LO
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Figure 5-16. Sensitivity Magnitude, LO

A key magnitude plot in this comparison is the complimentary sensitivity,

Figure 5-17. Not because of the slightly lower complex margins that will

occur with the suboptimal case, but for the reason that the high frequency

measurement noise will be attenuated much better by choosing -y larger than

I'0. The magnitude of T(s) also shows larger allowable multiplicative

uncertainty at high frequencies in the suboptimal case.

The closed-loop transfer function in Figure 5-18 shows a preferable roll

off. This would be a benefit if any high frequency noise came into the system

with the commanded input, since the suboptimal case would attenuate this

noise much better. The low frequency magnitudes appear to be identical.
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Figure 5-17. Complimentary Sensitivity Magnitude, LO
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Figure 5-18. Closed-Loop Transfer Function Magnitude, LO
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Figure 5-19 is the magnitude plot of Kb(s)S(s). The first interesting fact

to note is that the high frequency noise input to control usage is attenuated

much more in the suboptimal case (from Kb(s)S(s) roll off). Another

observation is that the allowable additive 1I A 11 . goes down barely in the

suboptimal case (peak of Kb(S)S(s) is slightly larger in the suboptimal case),

since 11 T 11 . is not being minimized here and is higher. In contrast, the

allowable plant additive uncertainty increases at high frequencies for the

suboptimal case, which is a direct result of the compensator roll off since the

magnitude of S(s) will approach 0 dB at high frequency.

The step response for the lower order model at y.° is Figure 5-20.

Simulation noises are included as in the H2 chapter. The low frequency

-5

- optimal
-10-~

10% sub

-15

S-20o

-30

-401

10-3 10-2 10-1 100 LO 102 103

Frequency (rad/sec)

Figure 5-19. Magnitude of Kb(s)S(s), LO
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Figure 5-20. N, from N, Command Step, LO, Optimal

disturbance is from the combination of noises wt and w2 that are not attenuated

well by S(s) and T(s), respectively, as in Equation (5.7).

y,(s) =S(s) G(s)K1(s)r(s) ÷ S(s) Grdw +T(s) Wnw 2  (5.7)

The high frequency noise is strictly due to w2 (see solid line in Figure 5-17).

The suboptimal comparison for the N, step response is Figure 5-21. A

large amount of the high frequency noise from the optimal case is attenuated

by raising -y. This is from the steep roll off of T(s); see the dashed line in

Figure 5-17. Overall, the step responses look very similar for the optimal and

suboptimal cases, except for the smaller high frequency measurement noise

content in the suboptimal case.
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Figure 5-21. N. for N. Command Step, LO, 10% Suboptimal

Figure 5-22 is the control usage response for the step NM command in the

optimal case. Large amounts of mid to high frequency noise corrupt the

system, as foreshadowed by the magnitude plot of Kb(s)S(s), Figure 5-19.

Kb(s)S(s) not rolling off (holds at -10 dB above 10 rad/sec) passes the mid to

high range frequency noise directly to the control usage response.

In contrast, Figure 5-23 has obviously much less high frequency

measurement noise than the optimal case. This is due to the roll off of

Kb(s)S(s) above around 20 rad/sec in Figure 5-19. The noise that does get

passed to control usage is the midrange band of Kb(s)S(s), from around 10 to

20 rad/sec.
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Figure 5-22. Control Usage (u) from N,, Command Step, LO, Optimal
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Figure 5-23. Control Usage (u) from N, Step, LO, 10% Suboptimal
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The conclusions of this look at a suboptimal H.. controller can be

summarized as:

i). The suboptimal controller is typically easier to compute.

ii). The optimal compensator has a "D" term and is order one less than

the plant (it is possible to not obey this, but not in any cases examined here),

whereas the suboptimal case has no "D" term and is full order.

iii). The "D" term in the H.. optimal compensator causes high frequency

noise corruption of the plant output and control usage.

iv). 11 Td 1. will rise with y to a certain point, then 11 Td •j will stay

basically constant. In the y = 100 case, flTII is around 2.9, whereas for

the other three cases in Table 5-2, 11 Td II - -.

v). The allowable 11 A . decreases as -y is raised above -y., but the

allowable additive plant uncertainty is larger in the suboptimal case at high

frequencies. The allowable multiplicative uncertainty is also larger at high

frequencies for the suboptimal case.

vi). Every margin decreases as y increases, but a small change in moving

-' away from -y. does not change the margins very much. For this small

change in -f, the noise corruption to the plant output and control usage can be

cut down measurably.

vii). All three of the suboptimal cases stabilize the higher order model.

viii). If the measurement noise is taken as high frequency only, then

backing off of -y7 will limit this high frequency noise ad the low frequency
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wind disturbance in this design, yet retain basically good tracking and

regulation properties. The tradeoff is in the lowering of the allowable 11 A I&

and margins.

As a summary of this chapter on H. designs, it is first seen that all H..

compensators stabilize the higher order system. Also, the baseline optimal H.

case is both a good tracker and regulator, and a slightly better regulator than

the H2 baseline tracking design. Furthermore, the optimal H.. baseline has

larger complex phase and upper gain margins over the H 2 baseline tracker. It

is also evident that the oo-norm robustness test fails in all H.. cases, yet the

higher order system is stabilized. With a seemingly good design, the ignored

topic of noise rejection is then addressed with the section on suboptimal H..

designs. A 2 % suboptimal choice would clearly be an improvement over the

optimal design because of sensor noise rejection. The reason for this

improvement in noise rejection is due to the lack of a "D" term in the

suboptimal compensator, and it is explained that a slight lowering of margins

is the small disadvantage of the suboptimal case. With acceptable baseline H2

and H. designs, the focus now turns to a method that gives a visible tradeoff

of H 2 and H. objectives.
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VI. Mixed H2LH., Dsig

6.1 H. Sensitivity and H2 Tracker

The purpose of this chapter is to demonstrate a design procedure that

gives a clear tradeoff between H2 and H. design objectives. This

nonconservative process, developed by Dr Brett Ridgely [Rid91], is the

general mixed H 2/H.. methodology. With this approach, an H, design on a

selected transfer function T• competes with an H. design on another transfer

function Td. Of the two closed-loop norms, II T I1. is designer fixed while

11 T, 112 is allowed to be reduced (mainly by a nonzero Q(s)). For a mixed

solution, jT• I- must be above y. and 1I T, 12 greater than or equal to cao.

The H2 part of the mixed setup will be the "performance" objective, including

both tracking and noise rejection. Robustness will be the main feature of the

H. part, although tracking is not completely abandoned. From Chapter II, the

general mixed solution is an admissible compensator K(s) that achieves:

inf 11 T,, 11, 2 subject to the constraint I1 Td I <
K adm

This methodology is different from the previous chapter that described

"backing off" of % to reach an H. suboptimal central solution, which is the

optimal H2 compensator at very large values of 'y. The point is that at large

y,'s the central H. compensator is H 2-optimal for T,, not TI,. With the mixed
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setup, now the tradeoff approaches the optimal 2-norm of T.. as -Y is

increased. The major change is that now Q(s) is effectively nonzero and

allows the 2-norm of T,. to be significantly reduced. Another difference is

that the order of the compensator is larger than the central H. suboptimal one

(which is the order of the plant), when dynamic weights are chosen for the H2

part of the problem. This is the situation here, represented by Figure 6-1,

because the H 2 part has two additional poles from dynamic weights, which

means that the "full order" mixed H2/H. compensator is the size of the

sl 02 w, d2

6-1. Mixed d 2/ A
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central H. compensator plus two states. The setup for the mixed case is

chosen as the combination of the H2 tracking design from Chapter IV and the

H.. one from the previous chapter. The complete diagram for the mixed case

is Figure 6-1. Common weight locations for the different parts have an

additional subscript (2 or oo) to denote the differences. The design plant now

consists of sixteen pieces, not nine as in the separate H2 and H. designs. As a

reference, the nine individual state space matrices of P(s) are Equations (4.15)

through (4.17) for the H2 part, and Equations (5.2) through (5.4) for the H.

part. The individual state space matrices for the mixd P(s) are given in

Equation (6.1).

A Bd Bw Bu

P (s)= Ce Ded Dew Dm

Cq Dd D, D= (6.1)

LC~y Dyd Dyw Dyu

Dd, D,, and D., are assumed to be zero, while D.d and Dw are not used in

problem formulation. Only the design plant's "A" matrix is examined here

(not all sixteen pieces) since the complete description is very large and is the

trivial combination of the equations mentioned previously. The mixed case

design "A" matrix, Equation (6.2), shows the two additional weights on the H2

part that create the larger compensator. 'These are the A2 and Ad matrices
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from the state space of the H2 tracking weight and the H2 wind disturbance

weight, respectively. This creates the order difference between the H2 and H..

designs shown previously and the mixed case. Additional insight into this

order difference is covered in Section 6.4. Now that the design setup is

established, weight choices can be examined.

As 0 0 0

0 Ad 0 0 0

A=BaCs 0 Aa 0 0 (6.2)

0 0 0 AA 0

BttC 0 0 Bt.UCA At.

6.2 H2 /H. Weight Selection

Again, the weight locations and types (dynamic versus scalar) are identical

to the individual H2 tracking and H. designs. The H 2 choices are taken to be

the "baseline" case described in the tracking design. To repeat, this is where

the tracking weight has a dc gain of 50 dB and a pole at 0.1 rad/sec. The

wind disturbance model is the same as described in Chapter III, and the values

of W,2 and W. are 20 and 1, respectively. The tracking necessity, along with

noise rejection, is the basis for the H2 part. The H. setup in this application

is created as a type of robustness constraint on the sensitivity transfer function

magnitude and the plant additive uncertainty. The sensitivity magnitude is
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weighted to have small gain at low frequencies, and a minimal infinity norm.

Small gain at low frequencies is to help reject possible disturbances at the

plant output, whereas a small 1S II is to maximize the complex margins that

depend on the sensitivity magnitude peak. The tracking weight is chosen with

a dc gain of 12 dB, a zero at 3 rad/sec, and poles at 0.1 rad/sec and

1000 rad/sec. A dc gain of 41.9 dB is used for the WA(s) weight, with a zero

at 3 rad/sec and a pole at 0.1 rad/sec. The constant 0.6024 is chosen for

W,.. These seemingly strange choices can be explained upon examining the

transfer function matrix Td, repeated here for convenience.

Wt.(s)(S(s)G(As)Kfs)-1) Wt.(s)S(s)WA(S)[~ We.-(S) S(s) W.Kb(s) S(s)WA(s)

The objective is to weight the right column of Td as a robustness measure, but

the left column also depends on these weights. A minor inconvenience in

selecting weights is the necessity for WA(S) to have a "D" term, and W,.. to

roll off. The double pole/zero combination on the sensitivity transfer function

in Td(1,2) is based on the sensitivity plots from previous designs. This

double pole/zero combination has to be chosen if the sensitivity magnitude

needs to be small at low frequencies and I S I . is to be minimized. The

pole/zero combination is split between the two dynamic H. weights because

WA(s) also weights the plant additive uncertainty in Td(2,2). W,. is taken to

be the scalar 0.6024 since it is combined with the WA(S) weight, effectively
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giving a high frequency weight of 8 dB. Remember the low frequency plant

additive uncertainty will approach the inverse of the low frequency plant

magnitude (i.e. -37.5 dB) for large compensator gains in this region. So even

though the low frequency weight on Kb(s)S(s) is not 8 dB, as long as the

combined weight of WA(s) and W,,. does not reach the 37.5 dB value, this will

not interfere with the sensitivity constraint.

As an aside, the proper way to weight robustness would be with a design

on the feedback compensator only, unlike what is done here. The reason to

use the feedback compensator is that robustness, and stability, depend only on

Kb(s). The problem with this setup is that the necessity of DYdIJyd being full

rank is not met in the mixed case, with the 1 DOF controller. This condition

in the mixed case is explained in Chapter II. In subsequent discussions with

Ridgely, this problem has been explained as not creating conflicts in the

solution to the mixed problem. As a result, an ongoing investigation into

setting up the H. part of the mixed case as a 1 DOF constraint on robustness

is being done by the author. The difficulty in this is that solutions to this

mixed case can easily take over a week to find (for ftll order cases). This

leads to the need for an explanation of the actual solution to the mixed H2/H.

problem.

6.3 Mixed I/H Solution

This section is an overview from [Fox7l], [RMV92], and
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[Rid91,124-129]. It is not intended to fully describe all the details of the

numerical solution used in this mixed H2/H. process. The solution used in

this general mixed H2/H.. problem is that utilized by Ridgely, and is called the

Davidon-Fletcher-Powell (DFP) algorithm, a numerical search routine. The

actual DFP process is explained in [Fox7l,75,104-109], and as it pertains to

the mixed problem in the other two stated references. First, the background

of the algorithm is discussed, followed by an explanation of its use in the

mixed H2/H.. problem.

The DFP numerical solution is necessary to solve the mixed problem since

a closed-form solution is not available; recall the discussion on the seven

nonlinear coupled necessary conditions. A key advantage of using DFP is that

it is a quadratically convergent first order method that does not require

calculation of the second partials of the function being minimized. The

second partials for the mixed problem turn out to be fourth order tensors that

require very large amounts of computer memory and therefore slow down

execution times [Rid91]. DFP does not calculate these second partials, only

an estimate of these that gets improved with each iteration. The function

being minimized in the mixed H2/H.. problem is

J•,(AC,BC,C) = (1-1t) tr[Q2a cJ + 14 tr[QaC C (6.3)

subject to

Q2 +Q2 AT +f3]T = 0
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and

AQ + QA..T + y'2QQCCTQ + -dT =0

The DFP flow chart, Figure 6-2, will have F - J, for the mixed solution

performance index.

The initial X0 in Figure 6-2 is a column vector of unknown variables.

This column vector represents the A,, B., and C, matrices for the mixed

problem. The S matrix is the direction that the current guess for X should

tY mStmip

s .- -HVFX
Figure 6-2. Flow Chart for DFP
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take to minimize F(X); the initial S. does not have to be given to the program

but is calculated internally. VF(X) is the column vector of partial derivatives

of the Lagrangian T,, as given in [Rid9l,114-117]. These partials are with

respect to the A,, B,, and C, matrices for the mixed H2/H_. problem. Again,

DFP differs from a second order method in that the inverse of the second

derivative matrix (P') is replaced by an estimate. This estimate is denoted by

H, and will be a symmetric positive definite matrix. A typical second order

method's S, S = - JV VF(X), is now represented by S = - H VF(X) in

DFP. Returning to Figure 6-2, K is the length of the step in the S direction.

Note that K is used here instead of ax, as in [Fox7l], to not conflict with

previously defined ci variables in this thesis. The remaining terms in

Figure 6-2 are explained in the DFP procedure.

The DFP iteration method follows these steps:

1) X. is given to the algorithm as compensator matrices A,, B,, and C,.

The gradient, VF(X), is then found from this input compensator. Note that

the input compensator must satisfy the cc-norm constraint on Td, and be

stabilizing. The initial guess for H is the identity matrix; therefore, S. is the

negative of the gradient when X. is used.

2) Following this start for DFP, the * value that minimizes F(Xq + KqSq)

is found through a one-dimensional search, as explained in [Rid91,127].
*

Next, a new X is given by Xq+1 = Xq + xqSq, and convergence is checked.

The program follows to Step 3 if convergence is not found.
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3) A new H is computed from Hq+i - Hq + Mq + Nq, where

[Fox7l,105] gives

SqSq
Mq Kq STY

q q

Nq H qYq)(HqYq 
) T

q - YT
qH q Yq

Yq - VF(Xq÷,)-VF(Xq)

4) Next a new S is found through Sq+1 = - Hq+I VF(Xq+i) and the

program returns to Step 2. This updated S and X give a new K" value, and the

process continues until convergence. The stop criterion depends on the

user-specified value of e in

VFq Hq VFq <

I F(Xq)I

This e value is set to 10' in all mixed runs.

Possible problems in the DFP solution that pertain to the mixed

application are covered in [Rid9l,128-129]. The actual approach to obtain the

mixed compensator begins with the designer choosing a value of 'Y between 'Y.

and 7'2. To repeat, the %* value is the optimal I T- I ., and 72 is the value of

I TA I. when using the optimal H2 compensator for T,.. The H. central

controller is then found at this value of y, so that it can be used for the initial
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guess X. in DFP. The problem of size difference with the initial compensator

will be addressed in the next section. A y close to y. is preferred since this

would serve as an initial guess for higher values of -y, but not lower values.

The variable p, shown earlier in the performance index Equation (6.3), is now

decreased until 1j T. 112 stops changing. The range of p is from near one to

around zero; actually, in this work it is not taken below the 0.0001 value.

Other convergence checks for the mixed solution are discussed in [Wel91,5-5].

This iteration technique of raising y, then driving j down towards zero, can

be continued up to -2. At y2 and above, the mixed compensator is equivalent

to the H 2 optimal compensator for T•.

6.4 DFP Start Compensator

The Xo that is discussed in the previous section, and shown in Figure 6-2,

is again the initial compensator guess (A,, B,, and CQ) needed to start DFP.

The problem associated with using this central H. compensator as the initial

guess is that it is full order for the H. design, not the mixed design. An Xo

of the central H. compensator would be the exact solution for the suboptimal

mixed problem at ff = 1 with scalar weights in the design. As shown in the

dynamically weighted "A" design matrix, Equation (6.2), the full order "A"

matrix for the H.. separate design is = comiatible with this initial guess.

For the weights explained earlier, this central H.. compensator is two states

less than the nine states required for the full order mixed guess. So the
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seemingly easy task of using the central H. controller as the initial guess turns

out to create a somewhat difficult problem.

The approach taken to increase the size of the initial guess compensator is

credited to Wells [Wel91]. This follows the (JQ)-parameterization of K(s)

that is discussed in Chapter II. Looking at Figure 6-3, the transfer function

matrix J(s) (not to be confused with a performance index) is completely known

for the H. suboptimal compensator.

K•. . . .• . . . o . . . . .............. /......... . -......... ,.

Figure 6-3. (J,Q)-Parameterization

The task then turns to finding a Q(s) that is admissible and gives the higher

order K(s). Only a two state increase is necessary for the initial guess, so the

objective is to find a second order admissible Q(s) (assuming no pole/zero

cancellations). The admissibility of Q(s) is that it must satisfy the y

constraint, i.e. • Q N, • y, and that it is proper and stable.
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The actual Q(s) can be "backed out" of K(s) since J(s) is completely

known. Note that if Q(s) is found from J(s) and K(s) for a central H.

suboptimal y value, it will be identically zero and K(s) will be equal to J.y(s).

The development in [Rid91,151-154] is the basis for finding Q(s) in this

manner, so that it could then be combined with J(s) (on Pro-Matlab-) to yield

the higher order start compensator. The question that now arises is how to

get a nonzero Q(s) from the central suboptimal H.'s J(s) and K(s). The

straightforward method used is the same as that of [Wel9l] and involves

modifying K(s) slightly to give this Q(s). In this study, the central H.

compensator was modified typically in the fourth decimal place of the first

term in "C,". In almost every case the resulting Q(s) had order well above

the two states necessary. Now Q(s) can be reduced to second order and

wrapped around J(s) to give the needed K(s). Stability and the -y constraint on

Q(s) need to be checked in the process. A program using a Schur model

reduction method, similar to the Pro-Matlab' one used by [Wel91], is utilized

to reduce Q(s). The resulting K(s) is in essence just the central H.

compensator from before, but a nearly nonminimal realization.

In summary, the ease of being able to just use a reduced order guess (H.

suboptimal central compensator) for the mixed case was not possible for this

dynamically weighted example. The somewhat lengthy process of creating the

higher order compensator by changing K(s) appears to be the only process that

worked regularly for [Wel9l], and also worked in this study.
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6.5 Mixed H2LH. Results

Values for 11 T 11. and 1 T.I1 are shown in Table 6-1 for six cases.

These six rows begin with the optimal value of -y = 1.064 for the H. part of

the mixed case. The bottom row's -y, 72 = 10.782, is the 1 Td 1. that results

from using the optimal H 2 compensator (K 2,). As defined earlier, the

Table 6-1. Mixed H2/H. Results, LO

Bode Bode Complex ComplexIIgTed IIW eiTgh Gain Phase Gain PhaseWeighted Weighted Margin Margin Margin Margin

(_) (dB) (deg) (dB) (deg)

1.064 Go -8.1, 12.0 ±42 -6.8, 10.5 +41

1.1 15.6686 -7.9, 11.9 ±41 -6.6, 10.0 ±40

1.25 15.6288 -9.0, 9.4 ±37 -7.1, 8.2 ±36

1.35 15.6250 -9.5, 9.9 ±35 -7.2, 7.5 ±34

5.0 15.6159 -11.3, 9.4 ±36 -8.2, 6.9 ±36

10.782 15.6141 -11.1, 10.1 ±36 -8.1, 7.1 ±35

optimal I T,.1 2 is a. and has a 15.6141 value. The middle four rows of

Table 6-1 represent actual mixed case results using y values of 1.1, 1.25,

1.35, and 5. The second column is the value of I T, 11 2 that results from

using the same compensator that gives the corresponding 7 values on the left.

The top row, representing the H. optimal solution, yields a theoretical i T. 2
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of infinity because of the "D" term in its compensator. On the bottom row is

the optimal 11 T, 112 for the H2 part of the mixed case, and yields the smallest

value that 1jT1 112 can possibly have, CIO. Between these two optimal solutions

for the separate parts are the four mixed cases that show the decreasing value

of 11 T, 112 as -y increases from Yo to 7y2. This 11 T• 112 versus -y curve

monotonically decreases as -V increases [Rid91,123]. The values of -Yo, Y2, and

ao represent performance limits for the mixed case solution, and will be shown

in the upcoming Figure 6-4. The 11 Td I and II T. 112 cannot be lower than -o

or cot, respectively. Raising y above y2 yields no beneficial compensators

since the mixed solution is already converged to the H2 compensator at 72.

Complex margins in Table 6-1 show the large upper gain and phase margins

for the yO case. These are a direct result of the H.. weight on the sensitivity

transfer function. As -y is raised, the complex phase follows a predictable

trend to a value of 34 degreees at -y = 1.35 for the first four rows. The

change in the last two rows is from the dependency of the complex phase

margin shifting to the peak of T(s), whereas the first four rows depend on the

peak of S(s). The upper complex gain margin follows a similar decreasing

trend, although there is a slight change from -y = 5 to 12. The author is not

satisfied that the y = 5 case fully converged to the mixed solution as in the

y = 1.1, 1.25, and 1.35 cases. This opinion is based on the plot of Td

versus frequency that did not have a flat low frequency magnitude like the

others. Returning to Table 6-1, the lower complex gain margin generally
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increases as y rises, although it is not specifically weighted in the H. or H2

design parts.

Magnitude and time response plots for this mixed design will show the

optimal H. results represented by a solid line, and the optimal H2 results with

a dot-dash line. The other two lines will be the mixed compensator results for

y = 1.1 and 1.25, denoted with a dashed and dotted line, respectively. These

two mixed cases are the -y values closest to y.; the two asterisks furthest left

in Figure 6-4. The "best" area for a compromise of the competing H2 and H..

objectives, i.e. both 11 T. 112 and 11 Tw•I small, is in the bottom left corner of

Figure 6-4 (within the dashed lines of the optimal constraints).

16

15.9

[ 15.8
0

z
S15.7

I I
I i
a a
i I

15.5-
0 Y2 4 6 6 10 Y12

02
Infinity Norm of Ted
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The first magnitude plot is Figure 6-5 which represents the maximum

singular value of T,.d for the four y values. The minimum singular value

(there are two singular values since T.4 is a 2 x 2 transfer function matrix) is

not included since it is not being constrained and only complicates the plot.

The value of y can be seen on the magnitude scale as it rises from 'Yo to 7Y2.

The line for y = 1.25 clearly starts conforming to the 72 line. In essence, the

lines will converge to the 72 one as -y is increased, although in this example

there is no reason to increase -y above around a 1.35 value. After this -y value

is reached, only 11 Td 11 really rises and j1 T, 112 barely falls anymore.

The maximum singular value plot for T, is shown as Figure 6-6. The

solid line for -y, or optimal IITd [ , definitely shows that more noise (from

12

0 ---- Y -1.1

S.......... Y =1.25

Y2 -

16
4

2.

1O(-3 1O'2 10- 100 101 102 103

Frequency (rad/lec)

Figure 6-5. Maximum Singular Values of Td, LO
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w) will pass through to the chosen outputs (z) in the design; remember this

includes weights. Also evident is the magnitude for the 3Y. curve in the high

frequency area; this creates the infinite I1 T,, I 2, since it does not roll off.

Raising y slightly above -yo shows the y = 1.1 and y = 1.25 lines converge

almost exactly to the 72 (or H2 optimal) curve's maximum singular value. The

high frequency lines for these three -y cases are literally matched where the

frequency integral will have the most importance. This graphically gives

insight into why the values of 11 Tm 112 are so close for the -y = 1.1, 1.25, and

72 cases; although 11 T. 112 also depends on the other two singular values. The

other singular values of T• (T•, is a 3 x 3 transfer function matrix) are not

shown because of plot complexity. The low frequency difference

-YO

Y =1.1

12 .. Y=1.25
mO " --- -------- 

Y2

10

*1 6

4-

2-

0
10-3 108 10-1 100 10' I02 103

Frequency (rad/sec)

Figure 6-6. Maximum Singular Values of T., LO
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will not have as much of an impact since the integral over this frequency

range is not very significant to the overall 11 Tý. 112 value.

Compensator magnitude plots are Figures 6-7 and 6-8 for the feedforward

and feedback compensators, respectively. One observation with these is that

the magnitude plots are not as similar as in the past 2 DOF designs. Backing

off of %'0 creates significant changes in the magnitudes above 1 rad/sec.

Remember that Q(s) is nonzero now, and that the feedback compensator is

heavily weighted by the H. part of the problem. Low frequency magnitudes

can be seen to drop as y approaches -"2. The point here is that tracking

actually is better as the low frequency magnitude falls, but recall that the

closed-loop transfer function for the 2 DOF setup is S(s)G(s)K•(s).

30- 1 0- 10- .0 10 10 . 10 ... I

20 ........ ........, . ................ ,.. . ... , ,., ,.20 -- Y =1.1

6--

-800

-40-•

-50-

10-8 10-2 10-1 106 101 102 103

Frequency (rad/se)

Figure 6-7. Feedforward Compensator Magnitude
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Figure 6-8. Feedback Compensator Magnitude

The classical loop shape is shown in Figure 6-9. High gain at low

frequencies is very evident in the -V curve, whereas the 72 curve represents

much lower gain here. Backing away from y. slightly does give a preferred

roll off at high frequency, yet the reduction in lower frequency magnitude is

very small. Notice that between 1 and 60 rad/sec, in crossover vicinity, the

magnitudes are very close.

A very important plot in this chapter is the sensitivity magnitude of

Figure 6-10. This is a key transfer function weighted heavily in the H. part

of the mixed case. The low frequency magnitude is pushed down by the H.

design, along with the double peaks. In actuality this is more of a smoothing
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Figure 6-9. Magnitude of G(s)Kb(s), LO

effect since the so-called "waterbed effect" holds in this design (notice the -to

case has higher magnitude around 100 rad/sec). It is evident that the f2 case

gives the lowest complex margins that depend on sensitivity magnitude and is

more "sensitive" to disturbances at low frequencies. With Y = 1.1, the

sensitivity is very close to the desired yo curve. The low frequency magnitude

rises slightly, as do the peaks of S(s) in the y = 1.1 case. Another

interesting feature is the sensitivity magnitude for the 72 case below 7 rad/sec.

The plot shows the magnitude of the -y = 1.25 case decreasing the wind

disturbance, which the pure H. part did not see before.
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Figure 6-11 is the complimentary sensitivity magnitude, and shows the

rise above 0 dB appearing to smooth in the 72 case. This 72 curve therefore

yields the best complex margins that depend on T(s) and shows that much less

high frequency sensor noise will pass through to the plant output because of

the low gain. Again the H2 optimization on T,, gives this 72 result. Of

interest are the magnitudes of the two mixed cases that also demonstrate much

less noise passage at high frequency. The y = 1.25 case is actually very

close to the H2 optimal one at high frequency, although it does have a larger

peak.
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Figure 6-11. Complimentary Sensitivity Magnitude, LO

The closed-loop transfer function magnitude plot is Figure 6-12. This is

another key figure that shows important tracking results. The H. optimal

solution on Td (-y. case) clearly will be a poor tracker because of its early

drop from 0 dB. This case will also pass more high frequency input noise to

the plant output, if high frequency noise comes in with the input signal. The

interesting feature is that the -y = 1.1, 1.25, and y2 curves are almost

identical. So going from a 'y = 1.064 value to y = 1.1 gives a tremendous

tracking improvement and brings down 11 T•,, 112 from infinity.

Plant additive uncertainty is shown in Figure 6-13. As before, the low

frequency magnitude approaches the inverse of the plant magnitude in this
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Figure 6-12. Closed-Loop Transfer Function Magnitude, LO

region. The only difference at low frequency is very small and can be .seen in

the 72 case, which had the lowest Kb(S) magnitude in this frequency range. At

high frequencies the 72 case will give the most additive plant uncertainty.

From earlier explanations, this plot also gives the noise passage to control

usage. The 72 line clearly minimizes the noise effects at high frequency, with

the y = 1.25 case very close.

The NZ response for a 1 G step input is shown in Figure 6-14. Similar to

the H. step responses of Chapter V, this plot shows a steady state error for all

four cases. Again, this error comes from not having infinite weight on the

tracking error, and a solution for this could be to alter Kf(s) after the design
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Figure 6-13. Magnitude of Kb(s)S(s), LO

process. The three -y cases of 1.1, 1.25, and 72 all fall almost exactly on top

of one another, as foreshadowed by the closed-loop transfer function

magnitude. This plot is important in that by raising -y from 1.064 to 1.1, the

mixed case gives the desired tracking response. In an examination of the step

response with noise inputs included (plot not shown), it was seen that the -Y,

case exhibited a large amount of high frequency noise. This was explained in

Section 5.2 and again is from the compensator "D" term.

Angle-of-attack response for a(0) = 5 degrees is shown in Figure 6-15.

All cases are very similar except for the initial overshoot that is slightly larger

for the y = 1.25 and y2 cases, and the second overshoot for these two cases
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does not follow the y = 1.1 and 7y, curves. In examining the same plot with

noise simulation (plot not shown), there did not appear to be any significant

differences in the four cases.

The elevator deflection for the initial o(0) = 5 degrees is Figure 6-16.

Note that none of the four cases breaks the 25 degree limit on elevator

deflection. As seen in the last plot, the two cases furthest away from Y. have

an overshoot around 0.8 seconds that is not evident in the - 0 and y = 1.1

cases. In a noise examination, the y. case was seen to have larger high

frequency noise corruption.
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The responses for the higher order model are all stable and are not shown

due to the similarity with the lower order responses. Overall the results of

this chapter can be summarized in the following:

i). The mixed case appears to use the nonzero Q(s) to improve on results

seen in the separate H2 and H.. designs.

ii). Simultaneously good tracking, complex margins from sensitivity,

regulation of the a initial perturbation, and disturbance rejection appear better

than in previous designs. At least the tradeoff is apparent now by selecting a

-y level.

iii). Feedforward and feedback compensator magnitudes show more of a

difference above I rad/sec than previous 2 DOF designs. Both compensator

magnitudes decrease at high and low frequencies as -y is raised.

iv). The loop shape also decreases at high and low frequencies as the

value of y is increased.

v). The low frequency magnitude of S(s) increases as y is raised, and the

two magnitude peaks of S(s) are no longer balanced.

vi). Magnitude at high frequency in T(s) fell as y was increased,

therefore more multiplicative uncertainty is allowed at high frequencies for the

larger y values.

vii). K•,(s)S(s) has a high frequency roll off when y is raised above -yo.

This gives increased allowable plant additive uncertainty at high frequencies.

As a chapter summary, the mixed setup is designed by combining the H2
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tracking baseline case and a modified H. tracking design. The same H.

diagram and T, as in Chapter V is used, but with a much reduced weight on

tracking and a greater weight on sensitivity. This combination therefore

results in the yo case having excellent complex phase and upper gain margins,

and low sensitivity magnitude at low frequencies. As y increases, the poor

tracking for the -y. case rapidly jumps to the good tracking for the H2 optimal

case. The tradeoff with these is very apparent in Figure 6-4, which shows the

absolute performance boundaries for the design setup. Also discussed in this

chapter were the DFP numerical algorithm for solving the mixed problem and

the process used in this work to obtain an initial guess compensator. With the

coverage of this final design type and methodology, the overall summary and

conclusions of this thesis are presented.
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VII. Conclusions and Recommendations

7.1 Summary and Conclusions

The main objective of this thesis was to investigate weight locations and

shapes for an F-16 Nz command following system. Three optimal control

methodologies were tested during this design weight examination. Successful

strategies for obtaining measures of performance and robustness were

presented in most designs, with the only exception being the H2/LQG design.

Separate H2, H.., and mixed H2/H. optimal designs all yielded practical

controllers, with different performance and robustness features amongst the

designs.

The initial chapter gave a limited design history that presented the

motivation for realistic applications of optimal design methods. Choices of

design weights, and on which transfer function they might appear, were

described as the tools to a successful compensator design. Three optimal

methods used in this work were then introduced, and some advantages and

disadvantages of each were explained.

Before the design process began, developmental background on the three

methodologies and a brief review of related design examples was discussed in

Chapter II. Manipulation of the design plant P, that includes weights, was
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seen to be the key to a successful design. Furthermore, in the inspection of

related design examples, several weight shapes were given for the

mixed-sensitivity transfer functions.

Chapter III presented the F-16 short period approximation (plus first order

servo and Padd approximation) as the basic design model, with a higher order

model that included the phugoid mode and increased orders of the servo and

approximated time delay. Evaluation systems used in Simulink' were then

described, along with possible design difficulties due to an unstable

nonminimum phase plant. Thus, Chapters II and III gave the needed

development before the first design investigation could begin.

The initial design was the basic H2/LQG setup in Chapter IV. Favorable

regulation to the a perturbation was found, but the higher order model was

unstable in all cases. Also, the complex margins tended to be low, and no

useful input command tracking was observed. Mainly the LQG designs

unstable higher order model is what led to including the dynamic weight for

the H2/Sensitivity design. In this second design of Chapter IV, the higher

order model was indeed stabilized by one case, which turned out to be a poor

regulator. The complex margins were improved over the basic LQG design,

but the tracking of an input command was only acceptable in a few cases

(even though the steady state error was now reduced). The final design of

Chapter IV was a 2 DOF tracking setup that produced two stabilizing
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compensators (for the higher order model), of which one was a good regulator

and tracker.

The focus then shifted to the H.. methodology for Chapter V. The

tracking setup yielded stable higher order models in all cases. A baseline H.

design was also shown as a good tracker and regulator, and a slightly better

regulator than the H2 tracking design. Also, the H. case had improved

complex phase and upper gain margins, and a lower sensitivity magnitude at

low frequencies. Since noise rejection was not addressed by the optimal H.

designs, an investigation into a suboptimal H.. design was given. This

suboptimal investigation showed that it would be the choice for a practical

application since now the compensator loses its feedthrough "D" term. All H.

designs were also stabilizing for the higher order model.

Chapter VI demonstrated a recent optimization advancement from Ridgely.

The general mixed H2/H. setup for T.. and Td was identical to the H2 and H..

tracking designs. While the H 2/Tracking baseline case was used in T,, a

different H. weight selection was used in Td (not H.. baseline of Chapter V).

The choice of weights for the H. part of the design drove the sensitivity

magnitude transfer function to very low magnitude at low frequency, and also

gave excellent complex phase and upper gain margins for this design plant.

Driving sensitivity to lower magnitudes and improving margins with the H.

constraint was necessary because the H 2 designs did not attack this problem

very well, due to the frequency integral in the 2-norm calculation. The mixed
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case proved to be advantageous over any separate H2 or H.. design

investigated, with the visible performance and robustness tradeoff being the

key. Although it did give slightly higher peaks to the T(s) and I-,(s)S(s)

magnitudes, the overall combination of tracking, disturbance rejection at low

frequencies, complex margins, and regulation of the initial a perturbation was

not approached by the other optimal designs.

Overall, this work has shown numerous design studies and weight choices.

The designer is asked to refer to specific schemes in this work since

conclusions from every case cannot be discussed. A key strategy was in

analyzing the closed-loop design plant, T. or T,, to aid in choosing weight

shapes, and in choosing the weight locations to get the necessary transfer

functions in these closed-loop design plants. The main point is that successful

controllers for this model were shown in almost every design type; the only

difficulty was in the H2/LQG method not stabilizing the higher order model.

All H.. (including suboptimal designs) and mixed H2/H. cases stabilized the

higher order model, and this was seen as a crucial advantage to these methods.

Also, 2 DOF controllers were used in most designs, and proved to be the only

choice when trying to achieve good tracking with this specific F-16 model. In

the H.. designs, the suboptimal H.. compensator was shown to be another

necessary choice if any form of sensor noise rejection is needed. The final

conclusion is that Ridgely's general mixed H2/H.. optimization method (of

which the example in Chapter VI is the first realistic application), is the
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preferred method because of its clear tradeoff between completely independent

designs on T, and T,.

7.2 Recommendations for Future Work

First, this same type of weight study could be conducted on a MIMO

example. Because of the increased difficulty in the MIMO case, and the

number of design iterations that it takes to go through all three optimization

investigations, the mixed H2/H. methodology should be concentrated on. Also

a viable topic in the mixed case would be to develop the theory for a reduced

order compensator. Ridgely proves the full order case in [Rid9 1], and Wells

likewise on the higher order example in [Wel91]. The reduced order (order of

H. design plant) mixed method will have the important advantages of having a

start guess central H. (Q(s) = 0) compensator for DFP with the necessary

order, and the algorithm will indeed run much faster with the reduced order

compensator. One other potential topic in the mixed investigation should be

to concentrate on a 1 DOF setup for the H. part of the problem, since

robustness is only controlled in the feedback loop. In summary, the vast

amount of potential work on the mixed case is very interesting and obviously

could yield great rewards to the control community, this is where the focus

should be.
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Appendix A: F-16 Model Data

These plant properties are for Mach 0.6 and sea level.

The state space below represents the short period approximation

Asp =
-1.4910e+00 9.9600e-01
9.7530e+00 -9.6000e-01

Bsp =
-1. 8800e-O1
-1.9040e+01

Csp - 3.5264e+01 -3.3400e-01

Dsp - -4.3660e+00

Zerosp = -1.2565e+00 ± 1.1935e+Oli

Polesp =
-4.3535e+00
1.9025e+00

The state space below represents the first order servo

Alser = -20 BIser = 20 Clser = 1 Dlser = 0

The state space below represents the first order Padd approximation

Alpade = -40 Blpade = 1 Clpade = 80 Dipade = -1
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The state space below represents the lower order model (includes second order

short period approximation, first order servo, and first order Padd

approximation)

Alow =
-2.0000e+01 0 0 0
-1.8800e-O1 -1.4910e+00 9.9600e-O1 0
-1.9040e+01 9.7530e+00 -9.6000e-01 0
-4.3670e+00 3.5264e+01 -3.3400e-01 -4.0000e+01

Blow = [20, 0, 0, 0 T

Clow = 4.3670e+00 -3.5264e+01 3.3400e-01 8.0000e+01

Dlow = 0

Zerolow =
-1.2564e+00 ± 1.1934e+Oli
4.0000e+01

Polelow =
-4.0000e+01
-4.3535e+00
1.9025e+00

-2.0000e+01

The state space below represents the short period and phugoid modes

Aspphu =
-1.4850e-02 3.7382e+01 -3.2200e+01 -1.7940e+01
-8.00OOe-05 -1.4910e+00 -1.3000e-03 9.9600e-01

0 0 0 1.0000e+00
-3.6000e-04 9.7530e+00 2.9000e-04 -9.6000e-01

Bspphu = [2.1400e-03, -1.8800e-01, 0, -1.9040e+01]T

Cspphu = 1.5000e-03 3.5264e+01 2.7200e-02 -3.3400e-01

Dspphu = -4.3660e+00
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Zerospphu -
-1.2563e+00 ± 1.1935e+Oli
-1.4238e-02
-8.8016e-04

Polespphu =
1.9055e+00

-8.5673e-03 ± 7.0838e-02i
-4.3542e+00

The state space below represents the fourth order Pad6 approximation

A4pade =
-4.0000e+02 -7.2000e+04 -6.7200e+06 -2.6880e+08
1.0000e+00 0 0 0

0 1.0000e+00 0 0
0 0 1.0000e+00 0

B4pade = [1, 0, 0, 0]T

C4pade = -8.0000e+02 3.3469e-08 -1.3440e+07 1.8126e-04

D4pade = 1.0000e+00

Zero4pade =
8.4152e+01 ± 1.0630e+02i
1.1585e+02 ± 3.4689e+01i

Pole4pade -
-8.4152e+01 ± 1.0630e+02i
-1.1585e+02 ± 3.4689e+Oli

The state space below represents the fourth order servo

A4ser =

-2.7010e+02 -2.5366e+04 -1.1489e+06 -1.4917e+07
1.0000e+00 0 0 0

0 1.0000e+00 0 0
0 0 1.0000e+00 0
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B4ser = [1, 0, 0, 0 T

C4ser = 0 0 0 14911000

D4ser = 0

Zero4ser ([

Pole4ser
-1.4480e+02
-5.2550e+01 ± 4.8358e+Oli
-2.0200e+01

The zeros/poles below represent the higher order system with Padd, Servo,

and short period/phugoid plant

Zeroshigh =

8.4152e+01 + 1.0630e+02i
1.1585e+02 + 3.4689e+Oli

-1.2563e+00 ± 1.1935e+Oli
-1.4238e-02
-8.8016e-04

Poleshigh -

-8.4152e+01 + 1.0630e+02i
-1.4480e+02
-1.1585e+02 ± 3.4689e+01i
-5.2550e+01 ± 4.8358e+Oli
-2.0200e+01
-4.3542e+00
1.9055e+00

-8.5673e-03 ± 7.0838e-02i
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